
Concept explainers
Consider the following wave function in SI units:
Explain how this wave function can apply to a wave
(a)

Whether the wave move toward right or the left.
Answer to Problem 17.58AP
The wave does not move toward right or the left while the wave moves outward equally in all directions.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
Here,
If
The wave moves outward equally in all directions because of the negative sign in
Conclusion:
Therefore, the wave does not move toward right or the left while the wave moves outward equally in all directions
(b)

The effect on its amplitude as it moves away from the source.
Answer to Problem 17.58AP
The amplitude of the wave will be decreased as it moves away from the source because amplitude is inversely proportional to the distance.
Explanation of Solution
From equation (1), the given wave function is,
From equation (2), the standard form wave function for the standing wave is,
From equation (1) and (2), it is clear that the amplitude is inversely proportional to its distance from the center. The amplitude of the wave will be decreased as it moves away from the source because amplitude is inversely proportional to the distance.
Conclusion:
Therefore, the amplitude of the wave will be decreased as it moves away from the source because amplitude is inversely proportional to the distance
(c)

The effect on its speed as it moves away from the source.
Answer to Problem 17.58AP
The speed of the wave is constant as it moves away from the source.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the speed of the wave is,
Here,
Substitute
The calculated value of the speed of the wave is equal to the speed of the wave in the water at
Conclusion:
Therefore, the speed of the wave is constant as it moves away from the source.
(d)

The effect on its frequency as it moves away from the source.
Answer to Problem 17.58AP
The frequency of the wave is constant as wave moves away from the source.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the frequency of the wave is,
Here,
Substitute
The frequency of the wave is constant at
Conclusion:
Therefore, the frequency of the wave is constant as the wave moves away from the source.
(e)

The effect on its wavelength as it moves away from the source.
Answer to Problem 17.58AP
The wavelength of the wave is constant as wave moves away from the source.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the wavelength of the wave is,
Here,
Substitute d
The wavelength of the wave is constant at
Conclusion:
Therefore, the wavelength of the wave is constant as the wave moves away from the source.
(f)

The effect of its power as it moves away from the source.
Answer to Problem 17.58AP
The power of the source and the net power of the wave at all distance as wave moves away from the source.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the intensity of the wave is,
Here,
Substitute d
Formula to calculate the power of the source and the net power of the wave at all distance is,
Here,
Substitute
Thus, the power of the source and the net power of the wave at all distance will be same because the wave moves outward equally in all directions
Conclusion:
Therefore, the power of the source and the net power of the wave at all distance as the wave moves away from the source.
(e)

The effect of its intensity as it moves away from the source.
Answer to Problem 17.58AP
The intensity of the source and the intensity of the wave at all distance as wave moves away from the source.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
The intensity of the wave is,
The intensity of the wave follows the inverse square law at
Substitute
Thus, the intensity of the source and the intensity of the wave are same as the wave moves away from the source because the wave moves outward equally in all directions.
Conclusion:
Therefore, the intensity of the source and the intensity of the wave are same as the wave moves away from the source.
Want to see more full solutions like this?
Chapter 17 Solutions
Physics for Scientists and Engineers (AP Edition)
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
General, Organic, and Biological Chemistry - 4th edition
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry: Structure and Properties (2nd Edition)
Chemistry: The Central Science (14th Edition)
Fundamentals Of Thermodynamics
- 7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forwardганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forward
- A small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forwardA small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius cc and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What is the direction of the electric field for b<r<c? Calculate the magnitude of the electric field for c<r<d. Calculate the magnitude of the electric field for r>d.arrow_forwardTICE D Conservation of Momentum 1. A 63.0 kg astronaut is on a spacewalk when the tether line to the shuttle breaks. The astronaut is able to throw a spare 10.0 kg oxygen tank in a direction away from the shuttle with a speed of 12.0 m/s, propelling the astronaut back to the shuttle. Assuming that the astronaut starts from rest with respect to the shuttle, find the astronaut's final speed with respect to the shuttle after the tank is thrown. 2. An 85.0 kg fisherman jumps from a dock into a 135.0 kg rowboat at rest on the west side of the dock. If the velocity of the fisherman is 4.30 m/s to the west as he leaves the dock, what is the final velocity of the fisher- man and the boat? 3. Each croquet ball in a set has a mass of 0.50 kg. The green ball, traveling at 12.0 m/s, strikes the blue ball, which is at rest. Assuming that the balls slide on a frictionless surface and all collisions are head-on, find the final speed of the blue ball in each of the following situations: a. The green…arrow_forward
- The 5.15 A current through a 1.50 H inductor is dissipated by a 2.15 Q resistor in a circuit like that in the figure below with the switch in position 2. 0.632/ C A L (a) 0.368/ 0+ 0 = L/R 2T 3r 4 (b) (a) What is the initial energy (in J) in the inductor? 0 t = L/R 2t (c) Эт 4t 19.89 ] (b) How long will it take (in s) the current to decline to 5.00% of its initial value? 2.09 S (c) Calculate the average power (in W) dissipated, and compare it with the initial power dissipated by the resistor. 28.5 1.96 x W X (ratio of initial power to average power)arrow_forwardImagine a planet where gravity mysteriously acts tangent to the equator and in the eastward directioninstead of radially inward. Would this force do work on an object moving on the earth? What is the sign ofthe work, and does it depend on the path taken? Explain by using the work integral and provide a sketch ofthe force and displacement vectors. Provide quantitative examples.arrow_forwardIf a force does zero net work on an object over a closed loop, does that guarantee the force is conservative? Explain with an example or counterexamplearrow_forward
- A futuristic amusement ride spins riders in a horizontal circle of radius 5 m at a constant speed. Thefloor drops away, leaving riders pinned to the wall by friction (coefficient µ = 0.4). What minimum speedensures they don’t slip, given g = 10 m/s²? Draw diagram (or a few) showing all forces, thevelocity of the rider, and their accelerationarrow_forwardYour RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? 0.00897 × H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? 8.97 * ΜΩarrow_forwardYour RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? ΜΩarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





