Concept explainers
Consider the following wave function in SI units:
Explain how this wave function can apply to a wave
(a)
Whether the wave move toward right or the left.
Answer to Problem 17.58AP
The wave does not move toward right or the left while the wave moves outward equally in all directions.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
Here,
If
The wave moves outward equally in all directions because of the negative sign in
Conclusion:
Therefore, the wave does not move toward right or the left while the wave moves outward equally in all directions
(b)
The effect on its amplitude as it moves away from the source.
Answer to Problem 17.58AP
The amplitude of the wave will be decreased as it moves away from the source because amplitude is inversely proportional to the distance.
Explanation of Solution
From equation (1), the given wave function is,
From equation (2), the standard form wave function for the standing wave is,
From equation (1) and (2), it is clear that the amplitude is inversely proportional to its distance from the center. The amplitude of the wave will be decreased as it moves away from the source because amplitude is inversely proportional to the distance.
Conclusion:
Therefore, the amplitude of the wave will be decreased as it moves away from the source because amplitude is inversely proportional to the distance
(c)
The effect on its speed as it moves away from the source.
Answer to Problem 17.58AP
The speed of the wave is constant as it moves away from the source.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the speed of the wave is,
Here,
Substitute
The calculated value of the speed of the wave is equal to the speed of the wave in the water at
Conclusion:
Therefore, the speed of the wave is constant as it moves away from the source.
(d)
The effect on its frequency as it moves away from the source.
Answer to Problem 17.58AP
The frequency of the wave is constant as wave moves away from the source.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the frequency of the wave is,
Here,
Substitute
The frequency of the wave is constant at
Conclusion:
Therefore, the frequency of the wave is constant as the wave moves away from the source.
(e)
The effect on its wavelength as it moves away from the source.
Answer to Problem 17.58AP
The wavelength of the wave is constant as wave moves away from the source.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the wavelength of the wave is,
Here,
Substitute d
The wavelength of the wave is constant at
Conclusion:
Therefore, the wavelength of the wave is constant as the wave moves away from the source.
(f)
The effect of its power as it moves away from the source.
Answer to Problem 17.58AP
The power of the source and the net power of the wave at all distance as wave moves away from the source.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the intensity of the wave is,
Here,
Substitute d
Formula to calculate the power of the source and the net power of the wave at all distance is,
Here,
Substitute
Thus, the power of the source and the net power of the wave at all distance will be same because the wave moves outward equally in all directions
Conclusion:
Therefore, the power of the source and the net power of the wave at all distance as the wave moves away from the source.
(e)
The effect of its intensity as it moves away from the source.
Answer to Problem 17.58AP
The intensity of the source and the intensity of the wave at all distance as wave moves away from the source.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
The intensity of the wave is,
The intensity of the wave follows the inverse square law at
Substitute
Thus, the intensity of the source and the intensity of the wave are same as the wave moves away from the source because the wave moves outward equally in all directions.
Conclusion:
Therefore, the intensity of the source and the intensity of the wave are same as the wave moves away from the source.
Want to see more full solutions like this?
Chapter 17 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
General, Organic, and Biological Chemistry - 4th edition
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry: Structure and Properties (2nd Edition)
Chemistry: The Central Science (14th Edition)
Fundamentals Of Thermodynamics
- If speed is tripled, how much larger will air drag become for an object? Show the math.arrow_forwardWhat does it tell us about factors on which air drag depends if it is proportional to speed squared?arrow_forwardWhat is the net charge on a sphere that has the following? x (a) 5.75 × 106 electrons and 8.49 × 106 protons 4.39e-13 What is the charge of an electron? What is the charge of a proton? C (b) 200 electrons and 109 protons 1.60e-10 What is the charge of an electron? What is the charge of a proton? Carrow_forward
- A spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.125 How does the electric field relate to the force? How do you calculate the net force? Narrow_forwardPoint charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.185 xm to the right of the 2.50 μC chargearrow_forwardc = ad Find the electric field at the location of q, in the figure below, given that q₁ = 9₁ = 9₁ = +4.60 nC, q=-1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.) magnitude direction N/C ° counterclockwise from the +x-axis 9a % 9 9barrow_forward
- Plastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between q₁ and 93. The sum of the charge on 9₁ and 92 is 9₁ + 92 = −2.9 µС, and the net charge of the system of all three beads is zero. E field lines 93 92 What charge does each bead carry? 91 92 -1.45 What is the net charge of the system? What charges have to be equal? μC 2.9 ✓ What is the net charge of the system? What charges have to be equal? μC 93 2.9 μεarrow_forwardA spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.275 How does the electric field relate to the force? How do you calculate the net force? Narrow_forwardPlastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between 91 system of all three beads is zero. E field lines 91 92 93 X What charge does each bead carry? 91 = 92 = ?2.9 0 μC × What is the net charge of the system? What charges have to be equal? μC 93 2.9 με and 93. The sum of the charge on 91 and 92 is 91 +92 = -2.9 μC, and the net charge of thearrow_forward
- An electron has an initial speed of 5.26 x 100 m/s in a uniform 5.73 x 105 N/C strength electric field. The field accelerates the electron in the direction opposite to its initial velocity. (a) What is the direction of the electric field? opposite direction to the electron's initial velocity same direction as the electron's initial velocity not enough information to decide × What is the direction of the force on the electron? How does it compare to the direction of the electric field, considering the sign of the electron's charge? (b) How far does the electron travel before coming to rest? 0.0781 × What kinematic equation is relevant here? How do you calculate the force due to the electric field? m (c) How long does it take the electron to come to rest? 5.27e8 What is the final velocity of the electron? s (d) What is the electron's speed when it returns to its starting point? 5.26e6 m/sarrow_forward(a) What magnitude point charge creates a 90,000 N/C electric field at a distance of 0.235 m? 5.53e-7 C (b) How large is the field at 22.2 m? 9e4 Using the equation for the electric field due to a point charge, and knowing the charge from part (a), can you solve for the field? N/Carrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning