
Interpretation:
The comparison of cost of material in the composite quarter with the quarter made up of nickel should be determined.
Concept introduction:
The rule of mixtures for particulate composites is:
Where
Volume fraction is defined as
Density is defined as the ratio of mass per unit volume expressed as
Where,
m is the mass of material in kg.
V is the volume of material in cubic meter.
The unit of density is kg/cubic meter.

Answer to Problem 17.56P
The cost of quarter made up of copper and nickel is
The cost of quarter made up of nickel is
Thus, the cost of quarter made up of copper and nickel is half of the cost of quarter made up of nickel.
Explanation of Solution
Given information:
Diameter of US quarter =
Thickness of US quarter =
Cost of copper =
Cost of nickel =
From given information, the volume of copper in US quarter =
The volume of nickel in US quarter =
Volume fraction of copper
Volume fraction of nickel
Calculation of volume of quarter,
Conversion of d from inch to cm, by multiplying it with 2.54 cm,
Conversion of thickness to cm, by multiplying it with 2.54 cm,
Thus, the volume of quarter =
Calculation of volume of copper using rule of mixing concept,
Volume fraction is defined as the ratio of volume of copper to the volume of quarter. On rearranging the equation,
Volume fraction of copper
Putting the values,
Therefore, the volume of copper
Calculation of volume of nickel using volume fraction relation,
Volume fraction of nickel
Thus, the volume of nickel
Calculation of weight of copper using the relationship of weight with density given as,
The values of density and volume are,
Putting the values in the formula of weight,
Calculation of weight of nickel using the relationship of weight with density given as,
The values of density and volume are,
Putting the values,
Calculation of cost of copper and nickel using the relation,
Conversion of per pound to per kg by multiplying it with 2.205
Cost of copper per kg =
Calculation of cost of nickel,
Conversion of per pound to per kg by multiplying it with 2.205,
Cost of nickel per kg =
Putting the values,
The total cost of quarter is the sum of cost of nickel and copper,
Thus, the total cost of quarter
Weight of nickel based on the volume of quarter is calculated as,
Calculation of cost of quarter, if it is made of nickel,
Thus, the cost of quarter made up of nickel
The comparison of total cost of quarter made up of copper and nickel with cost of quarter made up of only nickel is given by,
Thus, the cost of quarter made up of copper and nickel is half of the cost of quarter made up of nickel.
The cost of quarter made up of copper and nickel is
The cost of quarter made up of nickel is
Thus, the cost of quarter made up of copper and nickel is half of the cost of quarter made up of nickel.
Want to see more full solutions like this?
Chapter 17 Solutions
Essentials of Materials Science and Engineering, SI Edition
- what is the intake flow in cfm of a 5.3 liter engine running at 6200 RPM with a volumetric efficiency of 86%. If we supercharge it to flow 610 CFM what is the volumetric efficiency?arrow_forwardA cheetah is crouched 20 m to the east of an observer. At time t = 0 s, the cheetah begins to run due east toward an antelope that is 50 m to the east of the observer. During the first 2.0 s of the attack, the cheetah's coordinate x varies with time according to the equation x = 20 + 5t?. (a) Find the cheetah's displacement between t1 = 1.0 s and t2 = 2.0 s. (b) Find its average velocity during that interval. (c) Derive an expression for the cheetah's instantaneous velocity as a function of time, and use it to find Vy at t = 1.0 s and t = 2.0 s.arrow_forwardWrite at least 20 words for vocabulary and 10 verbs .for simple present, past, and past participlesarrow_forward
- Quiz/An eccentrically loaded bracket is welded to the support as shown in Figure below. The load is static. The weld size for weld w1 is h1=6mm, for w2 h2 5mm, and for w3 is h3 -5.5 mm. Determine the safety factor (S.f) for the welds. F=22 kN. Use an AWS Electrode type (E90xx). 140 101.15 REDMI NOTE 8 PRO AI QUAD CAMERA Farrow_forwardCan you compute the Panel Board Management while using the Lighting and Power Layout Plan as the base for it? The attached Panel Board Management picture is just an example. ps. not graded, I just want to know how to compute it based on a planarrow_forwardQuiz/An eccentrically loaded bracket is welded to the support as shown in Figure below. The load is static. The weld size for weld w1 is h1 = 4mm, for w2 h2 = 6mm, and for w3 is h3 -6.5 mm. Determine the safety factor (S.f) for the welds. F=29 kN. Use an AWS Electrode type (E100xx). BES FOR P 163 mm 133 mm 140 mmarrow_forward
- Make Sure the attached pic is correct, because the answer in mannings equation is wrong. Can you design a (Open Channel): -Most Efficient Section (Rectangular Shape) -Cost Estimate -Structural Analysis Design Requirements: Bed Slope= 1:1500 Manning's (n)= 0.015 Discharge: Q= 18 m^3/sarrow_forward3. Consider the circuit, in which R₁ = 10 KQ2, R2 = 5 KQ, R3 = 1 KQ, and RE = 8 KQ. The supply voltages are +Vcc = 10 V and -VEE = -5 V. Other parameters are ẞF = 100, VBE(On) = 0.7 V, and VCE(Sat) 0.2 V. Rc value will be specified later. (a) (3 points) Draw the dc equivalent circuit of the circuit. VI +Vcc Rc R2 RI R₁ RE -VEE υο R3 (b) Find the Thevenin equivalent voltage source VEQ and input resistance REQ of the DC equivalent circuit. Show your work. +Vcc Rc UC VEQ www REQ VE VEQ = REQ = ΚΩ RE VEEarrow_forwardWhich one of the 4 Entities mention in the diagram can have a recursive relationship? If a new entity Order_Details is introduced, will it be a strong entity or weak entity? If it is a weak entity, then mention its type (ID or Non-ID, also Justify why)?arrow_forward
- 5. Consider the ac equivalent circuit of an amplifier, where RE = 1 KS2, gm = 0.05 S, and Υπ= 2Κ Ω. (a) Redraw the ac equivalent circuit using the hybrid-pi small signal model for BJTS. Include ro in the model. R₁ ww Vi RB ww + RL Vo RE (b) Find the terminal resistance RIB using the circuit obtained in (a). Ignore ro. Show your work. (Don't use formula for RiB.)arrow_forward4. Consider the circuit. Use the symbol || to indicate the parallel of resistors in the following questions. (a) Express the input resistance Rin in terms of the terminal resistance and other necessary resistor values. (In other words, RiB, Ric, and RIE are given.) C₁ R₁ R₂ +Vcc Rc C3 R3 C2 ی RE -VEE (b) Express the output resistance Rout in terms of the terminal resistance and other necessary resistor values. (In other words, RiB, Ric and RiE are given.) (c) Express the voltage gain A₁ = ∞ in terms of terminal voltage gain Avt, the terminal Vi resistance, and other necessary resistor values. (Avt, RiB, Ric and R₁E are given.) +51arrow_forward2. ẞ 100, VBE(on)= 0.7 V, and VCE(sat) = 0.2 V for the BJT. We want to find the Q-point through the following steps. Show your work. a) Find the bias voltage VTH Using Thevenin's equivalent circuit. R1|| R2 www +5 V R₁ = 20 k IB VTH Answer: VTH = V b) Find the base current voltage IB. www. Answer: IB = μA (note the unit.) c) Find the collector voltage Vc (with reference to the ground). RC= 2.3 k B E R₂ = 30 k -5 V www R₁ = 5 ΚΩ ww AHI› RE= 5 ΚΩarrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY





