CHEMISTRY 1111 LAB MANUAL >C<
1st Edition
ISBN: 9781307092097
Author: Chang
Publisher: MCG/CREATE
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 17, Problem 17.53QP
Consider the reaction A → B + C at 298 K. Given that the forward rate constant (kf) is 0.46 s−1 and the reverse rate constant (kr) is 1.5 × 10−2/M · s, calculate ΔG° of the reaction.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Predict the major product of the following reaction and then draw a curved arrow mechanism for its formation.
Part: 0/2
Part 1 of 2
H₂SO
heat
: OH
90
Draw the structure of the major product.
Click and drag to start drawing a
structure.
3
Draw a curved arrow mechanism for the reaction, adding steps as necessary. Be sure to include all electrons that are necessary to the mechanism and all
nonzero formal charges.
C
Ö-H
H
+
-S-OH
.0.
Add/Remove step
X
टे
Click and drag to start
drawing a structure.
Draw a curved arrow mechanism for its formation. You may need to re-draw structures to show certain bonds. Ensure that HSO is used as the base to
deprotonate the ẞ carbon when necessary.
C
HO
: OH
HO: OH
=s
=
+
1
Add/Remove step
X
Click and drag to start
drawing a structure.
Chapter 17 Solutions
CHEMISTRY 1111 LAB MANUAL >C<
Ch. 17.3 - How does the entropy of a system change for each...Ch. 17.3 - For which of the following physical changes is S...Ch. 17.4 - Prob. 2PECh. 17.4 - Prob. 3PECh. 17.4 - Consider the gas-phase reaction of A2 (blue) and...Ch. 17.5 - Prob. 4PECh. 17.5 - Draw the missing distributions in Figure 17.2....Ch. 17.5 - The molar heats of fusion and vaporization of...Ch. 17.5 - Prob. 2RCCh. 17.6 - Calculate the equilibrium constant (KP) for the...
Ch. 17.6 - Prob. 7PECh. 17.6 - Prob. 8PECh. 17.6 - A reaction has a positive H and a negative S.Is...Ch. 17 - Explain what is meant by a spontaneous process....Ch. 17 - State which of the following processes are...Ch. 17 - Prob. 17.3QPCh. 17 - Define entropy. What are the units of entropy?Ch. 17 - How does the entropy of a system change for each...Ch. 17 - State the second law of thermodynamics in words...Ch. 17 - State the third law of thermodynamics and explain...Ch. 17 - For each pair of substances listed here, choose...Ch. 17 - Arrange the following substances (1 mole each) in...Ch. 17 - Using the data in Appendix 2, calculate the...Ch. 17 - Using the data in Appendix 2, calculate the...Ch. 17 - Without consulting Appendix 2, predict whether the...Ch. 17 - Prob. 17.14QPCh. 17 - Define free energy. What are its units?Ch. 17 - Why is it more convenient to predict the direction...Ch. 17 - Calculate G for the following reactions at 25C:...Ch. 17 - Calculate G for the following reactions at 25C:...Ch. 17 - From the values of H and S, predict which of the...Ch. 17 - Find the temperatures at which reactions with the...Ch. 17 - Explain the difference between G and G.Ch. 17 - Explain why Equation (17.14). is of great...Ch. 17 - Calculate KP for the following reaction at 25C:...Ch. 17 - For the autoionization of water at 25C,...Ch. 17 - Consider the following reaction at 25C:...Ch. 17 - Calculate G and KP for the following equilibrium...Ch. 17 - (a) Calculate G and KP for the following...Ch. 17 - The equilibrium constant (KP) for the reaction...Ch. 17 - Consider the decomposition of calcium carbonate:...Ch. 17 - The equilibrium constant KP for the reaction...Ch. 17 - At 25C, G for the process H2O(l)H2O(g) is 8.6...Ch. 17 - Calculate G for the process C(diamond)C(graphite)...Ch. 17 - What is a coupled reaction? What is its importance...Ch. 17 - What is the role of ATP in biological reactions?Ch. 17 - Referring to the metabolic process involving...Ch. 17 - In the metabolism of glucose, the first step is...Ch. 17 - Explain the following nursery rhyme in terms of...Ch. 17 - Calculate G for the reaction H2O(l)H+(aq)+OH(aq)...Ch. 17 - Calculate the Ssoln for the following processes:...Ch. 17 - The following reaction is spontaneous at a certain...Ch. 17 - Which of the following thermodynamic functions are...Ch. 17 - A student placed 1 g of each of three compounds A,...Ch. 17 - Use the data in Appendix 2 to calculate the...Ch. 17 - Predict the signs of H, S, and G of the system for...Ch. 17 - Prob. 17.45QPCh. 17 - Ammonium nitrate (NH4NO3) dissolves spontaneously...Ch. 17 - Calculate the equilibrium pressure of CO2 due to...Ch. 17 - Prob. 17.48QPCh. 17 - Prob. 17.49QPCh. 17 - Carbon monoxide (CO) and nitric oxide (NO) are...Ch. 17 - Prob. 17.51QPCh. 17 - Use the thermodynamic data in Appendix 2 to...Ch. 17 - Consider the reaction A B + C at 298 K. Given...Ch. 17 - The Ksp of AgCl is given in Table 16.2. What is...Ch. 17 - Prob. 17.55QPCh. 17 - Water gas, a mixture of H2 and CO, is a fuel made...Ch. 17 - Consider the following Brnstead acid-base reaction...Ch. 17 - Crystallization of sodium acetate from a...Ch. 17 - Prob. 17.59QPCh. 17 - A certain reaction is spontaneous at 72C. If the...Ch. 17 - Predict whether the entropy change is positive or...Ch. 17 - 17.62The reaction NH3(g)+HCl(g)NH4Cl(s) proceeds...Ch. 17 - Prob. 17.63QPCh. 17 - The molar heat of vaporization of ethanol is 39.3...Ch. 17 - Prob. 17.65QPCh. 17 - In the Mond process for the purification of...Ch. 17 - Calculate G and KP for the following processes at...Ch. 17 - Calculate the pressure of O2 (in atm) over a...Ch. 17 - Prob. 17.69QPCh. 17 - Prob. 17.70QPCh. 17 - Consider the reaction N2(g)+O2(g)2NO(g) Given that...Ch. 17 - Prob. 17.72QPCh. 17 - Prob. 17.73QPCh. 17 - Prob. 17.74QPCh. 17 - Prob. 17.75QPCh. 17 - Prob. 17.76QPCh. 17 - Prob. 17.77QPCh. 17 - Prob. 17.78QPCh. 17 - Prob. 17.79QPCh. 17 - Prob. 17.80QPCh. 17 - Prob. 17.81QPCh. 17 - Prob. 17.82QPCh. 17 - Prob. 17.83QPCh. 17 - Prob. 17.84QPCh. 17 - Shown here are the thermodynamic data for ethanol:...Ch. 17 - The reaction shown here is spontaneous at a...Ch. 17 - Consider two carboxylic acids (acids that contain...Ch. 17 - Many hydrocarbons exist as structural isomers,...Ch. 17 - Use the thermodynamic data in Appendix 2 to...Ch. 17 - A rubber band is stretched vertically by attaching...Ch. 17 - One of the steps in the extraction of iron from...Ch. 17 - Derive the equation G=RTln(Q/K) where Q is the...Ch. 17 - The sublimation of carbon dioxide at 78C is...Ch. 17 - Entropy has sometimes been described as times...Ch. 17 - Referring to Figure 17.1, we see that the...Ch. 17 - A student looked up the Gf, Hf, and S values for...Ch. 17 - Consider the following reaction at 298 K:...Ch. 17 - As an approximation, we can assume that proteins...Ch. 17 - Which of the following are not state functions: S,...Ch. 17 - Which of the following is not accompanied by an...Ch. 17 - Hydrogenation reactions (for example, the process...Ch. 17 - Give a detailed example of each of the following,...Ch. 17 - At 0 K, the entropy of carbon monoxide crystal is...Ch. 17 - Comment on the correctness of the analogy...Ch. 17 - The standard enthalpy of formation and the...Ch. 17 - In chemistry, the standard state for as solution...Ch. 17 - The following diagram shows the variation of the...Ch. 17 - Consider the gas-phase reaction between A2 (green)...Ch. 17 - The KP for the reaction N2+3H22NH3 is 2.4 103 at...Ch. 17 - The table shown here lists the ion-product...Ch. 17 - The reaction NH3(g)+HCl(g)NH4Cl(s) is spontaneous...Ch. 17 - The boiling point of diethyl ether is 34.6C....Ch. 17 - Nicotine is the compound in tobacco responsible...Ch. 17 - Estimate S for the process depicted in Figure...Ch. 17 - At what point in the series HOnH(g) (n = 1, 2, 3,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Which of the following could 1,2-ethanediol be directly synthesized from? OH HO О 0 0. O ?arrow_forwardDesign a synthesis of 1,2-diethoxyethane from an alkene. Select the single best answer for each part. Part: 0/3 Part 1 of 3 Which of the following could 1,2-diethoxyethane be directly synthesized from? O HO 0 HO.... OH HO HO × 5 > ?arrow_forwardDraw the skeletal structure of the major organic product of each step of the reaction sequence. Part: 0/2 Part 1 of 2 Part: 1/2 Part 2 of 2 Continue OH NaH Na Na Br + Click and drag to start drawing a structure. X : X G : Garrow_forward
- pleasearrow_forwardplease help me please pleasearrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: N2 (g) + 3H2 (g) = 2NH3 (g) AG⁰ = -34. KJ Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this system: ? rise Under these conditions, will the pressure of N2 tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N2 will tend to rise, can that be changed to a tendency to fall by adding H₂? Similarly, if you said the pressure of N2 will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no ☐ atm ☑ 5 00. 18 Ararrow_forward
- i need help with the followingarrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NO(g) +Cl₂ (g) = 2NOC1 (g) AGº = -41. kJ Now suppose a reaction vessel is filled with 8.90 atm of chlorine (C12) and 5.71 atm of nitrosyl chloride (NOC1) at 1075. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of NOCI tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of NOCI will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of NOCI will tend to fall, can that be changed to a tendency to rise by adding NO? yes no If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. atm ☑ 18 Ararrow_forwardIdentifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HCN is a weak acid. acids: 0.29 mol of NaOH is added to 1.0 L of a 1.2M HCN solution. bases: ☑ other: 0.09 mol of HCl is added to acids: 1.0 L of a solution that is bases: 0.3M in both HCN and KCN. other: 0,0,... ? 00. 18 Ar 日arrow_forward
- Identifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. acids: 0.2 mol of KOH is added to 1.0 L of a 0.5 M HF solution. bases: Х other: ☐ acids: 0.10 mol of HI is added to 1.0 L of a solution that is 1.4M in both HF and NaF. bases: other: ☐ 0,0,... ด ? 18 Ararrow_forwardIdentifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that NH3 is a weak base. acids: ☐ 1.8 mol of HCl is added to 1.0 L of a 1.0M NH3 bases: ☐ solution. other: ☐ 0.18 mol of HNO3 is added to 1.0 L of a solution that is 1.4M in both NH3 and NH₁Br. acids: bases: ☐ other: ☐ 0,0,... ? 000 18 Ar B 1arrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NH3 (g) = N2 (g) +3H₂ —N2 (g) AGº = 34. kJ Now suppose a reaction vessel is filled with 4.19 atm of ammonia (NH3) and 9.94 atm of nitrogen (N2) at 378. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of NH 3 tend to rise or fall? ☐ x10 fall Х Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of NH 3 will tend to rise, can that be changed to a tendency to fall by adding H₂? Similarly, if you said the pressure of NH3 will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no atm 00. 18 Ar 무ㅎ ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning

Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY