![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
To verify Trouton's rule for the given set of substances.
Concept Introduction:
According to Trouton's rule for, various liquids attheir boiling point the change in entropy value will be the same. The ratio of enthalpy of vaporization and boiling temperature of various liquids has the same value.
Where,
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 17.48QP
Trouton's rule is verified for benzene, hexane, mercury and toluene. All the four substances have
Explanation of Solution
To record the given data
To verify Trouton's rule for benzene
Trouton's rule can be verified by plugging in the values of
Since the value is approximately equal to
To verify Trouton's rule for hexane
Trouton's rule can be verified by plugging in the values of
Since the value is approximately equal to
To verify Trouton's rule for mercury
Trouton's rule can be verified by plugging in the values of
Since the value is approximately equal to
To verify Trouton's rule for Toluene
Trouton's rule can be verified by plugging in the values of
Since the value is approximately equal to
(b)
Interpretation:
To verify Trouton's rule for the given set of substances.
Concept Introduction:
According to Trouton's rule for, various liquids attheir boiling point the change in entropy value will be the same. The ratio of enthalpy of vaporization and boiling temperature of various liquids has the same value.
Where,
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 17.48QP
Trouton's rule is not obeyed by water and ethanol due to the high entropy of vaporization.
Explanation of Solution
To record the given data
To verify Trouton's rule for ethanol
Trouton's rule can be verified by plugging in the values of
Since, the value is greater than
To verify Trouton's rule for water
Trouton's rule can be verified by plugging in the values of
Since the value is greater than
To explain the reason for the deviation from hydrogen bond in case of water and ethanol.
For water and ethanol there exist strong hydrogen bonding attraction in the liquid state. Hydrogen bonding interaction decreases the entropy in the system. In gaseous state the hydrogen bonding interaction becomes weaker and the molecules will have more randomness in the system. The entropy of vaporization will be high. This is the reason why water and ethanol is showing larger deviation from Trouton's rule.
Want to see more full solutions like this?
Chapter 17 Solutions
Chemistry
- 16. The proton NMR spectral information shown in this problem is for a compound with formula CioH,N. Expansions are shown for the region from 8.7 to 7.0 ppm. The normal carbon-13 spec- tral results, including DEPT-135 and DEPT-90 results, are tabulated: 7 J Normal Carbon DEPT-135 DEPT-90 19 ppm Positive No peak 122 Positive Positive cus и 124 Positive Positive 126 Positive Positive 128 No peak No peak 4° 129 Positive Positive 130 Positive Positive (144 No peak No peak 148 No peak No peak 150 Positive Positive してしarrow_forward3. Propose a synthesis for the following transformation. Do not draw an arrow-pushing mechanism below, but make sure to draw the product of each proposed step (3 points). + En CN CNarrow_forwardShow work..don't give Ai generated solution...arrow_forward
- Label the spectrum with spectroscopyarrow_forwardQ1: Draw the most stable and the least stable Newman projections about the C2-C3 bond for each of the following isomers (A-C). Are the barriers to rotation identical for enantiomers A and B? How about the diastereomers (A versus C or B versus C)? enantiomers H Br H Br (S) CH3 H3C (S) (R) CH3 H3C H Br A Br H C H Br H3C (R) B (R)CH3 H Br H Br H3C (R) (S) CH3 Br H D identicalarrow_forwardLabel the spectrumarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)