![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_largeCoverImage.gif)
Consider the gas-phase reaction between A2 (green) and B2 (red) to form AB at 298 K:
(1) Which of the following reaction mixtures is at equilibrium?
(2) Which of the following reaction mixtures has a negative ΔG value?
(3) Which of the following reaction mixtures has a positive ΔG value?
The partial pressures of the gases in each frame are equal to the number of A2, B2, and AB molecules times 0.10 atm. Round your answers to two significant figures.
(a)
![Check Mark](/static/check-mark.png)
Interpretation:
The equilibrium process should be determined from the given equilibrium reaction.
Concept Introduction:
Free energy
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter
Explanation of Solution
We calculate the equilibrium constant
The reaction mixture (c) is at equilibrium
(b)
![Check Mark](/static/check-mark.png)
Interpretation:
The negative entropy value has to be calculated and identified for the given equilibrium reaction.
Concept Introduction:
Free energy
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter
Reaction quotient: This type of chemical equilibrium reaction proceeds likely to produced, given either the pressure (or) the concentration of the reactants and the products. The value can be compared to the equilibrium constant, to determine the direction of the reaction that is take place. Then reaction quotient (Qc) the indication of Q can be used to determine which direction will shift to reach of chemical equilibrium process.
Explanation of Solution
The value of
Reaction mixture (a) has a negative
(c)
![Check Mark](/static/check-mark.png)
Interpretation:
The positive entropy value has to be calculate and identified given equilibrium reaction.
Concept Information:
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter
Reaction quotient: This type of chemical equilibrium reaction proceeds likely to produced, given either the pressure (or) the concentration of the reactants and the products. The value can be compared to the equilibrium constant, to determine the direction of the reaction that is take place. Then reaction quotient (Qc) the indication of Q can be used to determine which direction will shift to reach of chemical equilibrium process.
Explanation of Solution
The reaction mixture (b) has positive
Want to see more full solutions like this?
Chapter 17 Solutions
Chemistry
- Determine the entropy change for the reaction SO2(g) + O2(g) following information: Standard Entropy Values of Various Substance Substance SO2(g) 02(g) SO3(g) So (J/mol K) 248.2 205.0 256.8 → SO3(g) given thearrow_forwardIndicate which one of the following reactions most certainly results in a negative AS sys. O1402(g) + 3NH4NO3 (s) + C10 H22(1) → 3N2(g) + 17H2O(g) + 10CO2(g) ○ CO2(aq) = CO2(g) ○ H₂O(g) = H₂O(s) CaCO3(g) = CaO(s) + CO2(g) O CuSO4.5H2O(s) = CuSO4(s) + 5H2O(g)arrow_forwardEstimate the DH°rxn of the reaction below: H H-C-C=C-H H Н A table of bond energy Bond H Bond Energy (kJ/mol) C-H 413 C-O 360 C=O 743 C-C 348 |C = C 612 O-H 463 H-H 436 + H-H -> H H-C. - H | | 1 HHHarrow_forward
- Show work...don't give Ai generated solutionarrow_forwardGiven the standard enthalpies of formation for the following substances, determine the reaction enthalpy for the following reaction. 3A(g) + 1B (g) 4C (g) + 7D (g) Substance AH in kJ/mol A (g) - 25.07 B (g) - 36.51 C (g) - 90.09 D (g) + 56.11 AHran =?kJarrow_forwardWhat is the change in internal energy (ΔU) when a system is heated with 42.0 J of energy while it does 110.0 J of work?arrow_forward
- Can you help me solve this problem and explain what the answers are?arrow_forwardFor which reaction below does the enthalpy change under standard conditions correspond to a standard enthalpy of formation? (Choose all that applies) SO2(g) + 1/2 O2(g) → SO3(g) 2H2(g) + C(s) → CH4(g) Mg(s) + 1/2 O2(g) → MgO(s) CO(g) + H2O(g) → CO2(g) + H2(g) CO2(g) + H2(g) → CO(g) + H2O(g) 1/2 H2(g) + 1/2 N2(g) + 3/2 O2(g) → HNO3(g) CO2(g) + C(s) 2CO(g) N2(g) + 202(g) → 2NO2(g)arrow_forwardChoose all the molecules with zero standard-enthalpy-of-formation (AH% = 0) Fe(s) FeCl2(s) N2(g) H2O(l) 02(g) C(graphite) K(s) H2O(g)arrow_forward
- 8.5 g of potassium hydroxide (molar mass = 56.1 g/mol) dissolves in 125 g of water and the temperature of the solution increases by 15.58°C. Calculate the AH soln for potassium hydroxide. Assume the specific heat capacity of the solution is 4.2 J.g¨¹.ºC-1. KOH(s) → →K+ K(aq) + OH AH solution = ?kJ/mol (aq)arrow_forwardWhat will be the final temperature of a 8.79 g piece of iron (CP = 25.09 J/(mol · oC)) initially at 25.0oC, if it is supplied with 302.8 J from a stove?arrow_forwardIdentify the set of stoichiometric coefficients that balances the reaction equation for the combustion of the hydrocarbon below: _ C19 H4002 → CO2 + H2Oarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079113/9781305079113_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)