To write:
The balanced equation for the cell for each pair and identify which half-reaction takes place at anode and which at cathode.
Answer to Problem 17.32QA
Solution:
a) Anode:
Cathode:
----------------------------------------------------------------------------------
Balanced equation:
b) Anode:
Cathode:
----------------------------------------------------------------------------------------------------------------
Balanced equation:
c) Anode:
Cathode:
--------------------------------------------------------------------------------------------------
Balanced equation:
Explanation of Solution
1) Concept:
We are asked to write and balance the cell reaction from the given pair. Values of standard reduction potential are given in appendix 6, table A6.1. Higher the standard reduction potential, higher is the tendency to reduce. So the element that has a negative or small value of standard reduction potential is more likely to oxidize. Therefore, we reverse that reaction to make it an oxidation half reaction. For an
Adding two half
2) Formula:
3) Given:
i)
ii)
iii)
4) Calculations:
The standard reduction potential values for all these reactions are taken from the Appendix 6, table A6.1.
a.
Since the standard reduction potential for
In the first pair of reactions, the number of electrons is not the same, so we need to balance it. So, multiply the second reaction by 2, and we get
So,
Now add two half balanced reactions:
Anode:
Cathode:
-------------------------------------------------------------------------
b.
Since the standard reduction potential for the second reaction is higher than that of the first reaction, the second given reaction will serve as a cathode and undergo a reduction half reaction, and the first given reaction will serve as an anode and undergo an oxidation half reaction.
In the second pair of reactions, the number of electrons is not the same, so we need to balance it. So, multiply the first reaction by
Now add two half reactions:
Anode:
Cathode:
----------------------------------------------------------------------------------------------------------------
c.
Since the standard reduction potential for the second reaction is higher than that of the first reaction, the second given reaction will serve as a cathode and undergo a reduction half reaction, and the first given reaction will serve as an anode and undergo an oxidation half reaction.
In the third pair of reactions, electrons are not the same, so we need to balance them, so, multiply second reaction by 2. We get
So,
Now add two half balanced reactions:
Anode:
Cathode:
-------------------------------------------------------------------------------------------
Conclusion:
For an electrochemical cell, higher the standard reduction potential, higher is the tendency to reduce (cathode). So, the reaction that has a negative or small value of standard reduction potential is more likely to oxidize (anode). Therefore, this reaction is reversed to get the oxidation reaction that will take place at the anode. The reaction with a higher value of standard reduction potential is the reduction reaction that will take place at the cathode.
Want to see more full solutions like this?
Chapter 17 Solutions
Chemistry: An Atoms-Focused Approach
- The emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forwardSteps and explanation pleasearrow_forwardSteps and explanation to undertand concepts.arrow_forward
- Nonearrow_forward7. Draw a curved arrow mechanism for the following reaction. HO cat. HCI OH in dioxane with 4A molecular sievesarrow_forwardTry: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forward
- Nonearrow_forward16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY