It is well known that a potato bakes faster if a large nail is stuck through it. Why? Does an aluminum nail work better than a steel one? Why or why not? (Note: Don’t try this in a microwave oven!) There is also a gadget on the market to hasten the roasting of meat; it consists of a hollow metal tube containing a wick and some water. This is claimed to work much better than a solid metal rod. How does it work?
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
University Physics with Modern Physics, Books a la Carte Edition; Modified MasteringPhysics with Pearson eText -- ValuePack Access Card -- for ... eText -- Valuepack Access Card (14th Edition)
Additional Science Textbook Solutions
Sears And Zemansky's University Physics With Modern Physics
Cosmic Perspective Fundamentals
College Physics: A Strategic Approach (3rd Edition)
University Physics (14th Edition)
- If the average kinetic energy of the molecules in an ideal gas initially at 20C doubles, what is the final temperature of the gas? (5.6) (a) 10C (b) 40C (c) 313C (d) 586Carrow_forwardOne mole of an ideal gas is contained in a cylinder with a movable piston. The initial pressure, volume, and temperature are Pi, Vi, and Ti, respectively. Find the work done on the gas in the following processes. In operational terms, describe how to carry out each process and show each process on a PV diagram. (a) an isobaric compression in which the final volume is one-half the initial volume (b) an isothermal compression in which the final pressure is four times the initial pressure (c) an isovolumetric process in which the final pressure is three times the initial pressurearrow_forwardConsider an object with any one of the shapes displayed in Table 8.1. What is the percentage increase in the moment of inertia of the object when it is warmed from 0°C to 100°C if it is composed of (a) copper or (b) aluminum? Assume the average linear expansion coefficients shown in Table 10.1 do not vary between 0°C and 100°C. (c) Why are the answers for parts (a) and (b) the same for all the shapes?arrow_forward
- The ideal gas law is a very simple mathematical relationship that relates several physical properties of a gas. This law is only valid when the behavior of a gas is idealized according to three principal assumptions. (i) State the three assumptions made about an ideal gas, and for each assumption (ii) explain which physical property of a gas would be affected if that assumption was not made.arrow_forwardAnswer the question shown in the imagearrow_forwardFollowing a collision in outer space, a copper disk at 850°C is rotating about its axis with an angular speed of 25.0 rad/s. As the disk radiates infrared light, its temperature falls to 20.0°C. No external torque acts on the disk. (a) Does the angular speed change as the disk cools? Explain how it changes or why it does not. (b) What is its angular speed at the lower temperature?arrow_forward
- I need help with this questionarrow_forwardYou wish to buy a new freezer for your basement. The primary use of the freezer will be to prepare ice for family parties. You have a very large family, with grandparents, parents, sisters, brothers, uncles, aunts, cousins, nephews, nieces, and grandchildren. As a result, family birthday parties are held every couple of weeks, and you need lots of ice for drinks. You want the freezer to convert 10.6 kg of water at 21.0°C to 10.6 kg of ice at −8.8°C in 2.00 h. But, in order to keep your electric bill down, you want the power rating of the freezer to stay below 100 W. From these requirements, you determine the minimum COP of the freezer that will satisfy your needs. (Consider that the specific heat of water is 4,186 J/(kg · °C), the specific heat of ice is 2,090 J/(kg · °C), the latent heat of fusion of water is 3.33 ✕ 105 J/kg, and the latent heat of vaporization of water is 2.26 ✕ 106 J/kg.) Find the coefficient of performance (COP).arrow_forwardYou wish to buy a new freezer for your basement. The primary use of the freezer will be to prepare ice for family parties. You have a very large family, with grandparents, parents, sisters, brothers, uncles, aunts, cousins, nephews, nieces, and grandchildren. As a result, family birthday parties are held every couple of weeks, and you need lots of ice for drinks. You want the freezer to convert 10.5 kg of water at 23.5°C to 10.5 kg of ice at -8.6°C in 2.00 h. But, in order to keep your electric bill down, you want the power rating of the freezer to stay below 100 W. From these requirements, you determine the minimum COP of the freezer that will satisfy your needs. (Consider that the specific heat of water is 4,186 J/(kg. °C), the specific heat of ice is 2,090 J/(kg. °C), the latent heat of fusion of water is 3.33 x 105 J/kg, and the latent heat of vaporization of water is 2.26 x 106 J/kg.) COP = Need Help? Read Itarrow_forward
- An ice cube and a stone are put in two different glasses of coke. If we know that temperatures of coke and glasses are 20°C, both of the ice cube and stone are -20°C and if we suppose that the glasses provide full thermal isolation, calculate equilibrium temperatures of the two glasses.m coke =0.3 kg. m glass= 0.2 kgm stone =0.2 kg m ice-cube=0.1 kg c ice = 0.6 J g/ cc stone = 0.5 J g/c C glass =0.84 J g/cC Coke = 1 J g/carrow_forwardYou wish to buy a new freezer for your basement. The primary use of the freezer will be to prepare ice for family parties. You have a very large family, with grandparents, parents, sisters, brothers, uncles, aunts, cousins, nephews, nieces, and grandchildren. As a result, family birthday parties are held every couple of weeks, and you need lots of ice for drinks. You want the freezer to convert 10.6 kg of water at 23.0°C to 10.6 kg of ice at −9.2°C in 2.00 h. But, in order to keep your electric bill down, you want the power rating of the freezer to stay below 100 W. From these requirements, you determine the minimum COP of the freezer that will satisfy your needs. (Consider that the specific heat of water is 4,186 J/(kg · °C), the specific heat of ice is 2,090 J/(kg · °C), the latent heat of fusion of water is 3.33 ✕ 105 J/kg, and the latent heat of vaporization of water is 2.26 ✕ 106 J/kg.)arrow_forwardThere are two important isotopes of uranium, 235 U and 238 U ; these isotopes are nearly identical chemically but have different atomic masses. Only 235 U is very useful in nuclear reactors. Separating the isotopes is called uranium enrichment (and is often in the news as of this writing, because of concerns that some countries are enriching uranium with the goal of making nuclear weapons.) One of the techniques for enrichment, gas diffusion, is based on the different molecular speeds of uranium hexafluoride gas, UF6 . (a) The molar masses of 235 U and 238 UF6 are 349.0 g/mol and 352.0 g/mol, respectively. What is the ratio of their typical speeds vrms ? (b) At what temperature would their typical speeds differ by1.00 m/s? (c) Do your answers in this problem imply that this technique may be difficult?arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning