Chemistry, Books a la Carte Plus Mastering Chemistry with eText -- Access Card Package (7th Edition)
Chemistry, Books a la Carte Plus Mastering Chemistry with eText -- Access Card Package (7th Edition)
7th Edition
ISBN: 9780133900811
Author: John E. McMurry, Robert C. Fay, Jill Kirsten Robinson
Publisher: PEARSON
bartleby

Videos

Question
100%
Book Icon
Chapter 17, Problem 17.1P
Interpretation Introduction

Interpretation: Spontaneous reactions are self driven reactions; they take place immediately without any assistance from external source. The spontaneity of a process depends on several factors; the reaction is spontaneous if   ΔSosys  is positive or   ΔHosys  is negative.

Concept introduction: The spontaneity of a reaction can be determined by the equation given below.

If the sign of ΔGsystem is negative the reaction is spontaneous, and if it is positive, the reaction is non-spontaneous.

  ΔGsystem=ΔHsystemTΔSsystem

Temperature in this equation is taken in Kelvin, it is always positive (or zero).

Given:

The given processes are-

  1. Diffusion of perfume molecules from one side of a room to the other side.
  2. Heat flow from a cold object to a hot object.
  3. Decomposition of rust (Fe2O3. H2O) to iron metal, oxygen, and water.
  4. A mixture of gaseous N2 , H2 , and NH3 , with the partial pressures
  5. (PN2=1 atm, PH2=0.25 atm, PNH3=10 atm),  converts some of the N2 and H2 to NH3 .

      N2(g)+3H2(g)Catalyst2NH3(g) at 300 K

      Kp=4.4×105

To determine:

To determine which of the given processes are spontaneous and which are non-spontaneous.

Expert Solution & Answer
Check Mark

Answer to Problem 17.1P

Solution:

The given processes are-

  1. Spontaneous
  2. Non-spontaneous
  3. Non-spontaneous
  4. Spontaneous

Explanation of Solution

  1. Diffusion of perfume molecules from one side of a room to the other side.
  2. This process is governed by change in entropy.

    The molecules of perfume, when move from one side of a room to the other side experience increase in the volume where, the particles move randomly. Randomness increases due to the increase in the volume. The change in entropy is positive, therefore the process is spontaneous.

  3. Heat flow from a cold object to a hot object.
  4. This process is governed by temperature.

    Heat flow from a system to surroundings is an exothermic process and is favourable at low temperature. Since the surrounding is at higher temperature, this reaction is endothermic, and change in enthalpy is positive, therefore the process is non-spontaneous.

  5. Decomposition of rust (Fe2O3. H2O) to iron metal, oxygen, and water.
  6. This process is reverse of rusting of Iron. Rusting of Iron is a spontaneous process due to the continuous availability of oxygen and moisture from the environment. But the reverse is not spontaneous at all, as there iron that has rusted will never loose moisture and oxygen to for Iron.

  7. A mixture of gaseous N2 , H2 , and NH3 , with the partial pressures
  8. (PN2=1 atm, PH2=0.25 atm, PNH3=10 atm),  converts some of the N2 and H2 to NH3 .

      N2(g)+3H2(g)Catalyst2NH3(g) at 300 K

      Kp=4.4×105

    Calculating reaction quotient, Q

      Q=Pressure  of  ProductsPressure  of  Reactants

      Q= P N H 3 2P N 2 P H 2 3

      Q=10210.253=6.4×103

    Since, Kp is higher than Q, therefore the reaction is spontaneous.

Conclusion

The given processes are-

  1. Spontaneous
  2. Non-spontaneous
  3. Non-spontaneous
  4. Spontaneous

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
None
Dr. Mendel asked his BIOL 260 class what their height was and what their parent's heights were. He plotted that data in the graph below to determine if height was a heritable trait. A. Is height a heritable trait? If yes, what is the heritability value? (2 pts) B. If the phenotypic variation is 30, what is the variation due to additive alleles? (2 pts) Offspring Height (Inches) 75 67.5 60 52.5 y = 0.9264x + 4.8519 55 60 65 MidParent Height (Inches) 70 75 12pt v V Paragraph B IUA > AT2 v V
Experiment:  Each team will be provided with 5g of a mixture of acetanilide and salicylic acid. You will divide it into three 1.5 g portions in separate 125 mL Erlenmeyer flasks savıng some for melting point analysis. Dissolve the mixture in each flask in ~60mL of DI water by heating to boiling on a hotplate. Take the flasks off the hotplate once you have a clear solution and let them stand on the bench top for 5 mins and then allow them to cool as described below. Sample A-Let the first sample cool slowly to room temperature by letting it stand on your lab bench, with occasional stirring to promote crystallization. Sample B-Cool the second sample 1n a tap-water bath to 10-15 °C Sample C-Cool the third sample in an ice-bath to 0-2 °C Results: weight after recrystalization and melting point temp. A=0.624g,102-115° B=0.765g, 80-105° C=1.135g, 77-108 What is the percent yield of A,B, and C.

Chapter 17 Solutions

Chemistry, Books a la Carte Plus Mastering Chemistry with eText -- Access Card Package (7th Edition)

Ch. 17 - Prob. 17.11PCh. 17 - Conceptual APPLY 17.12 What are the signs (+, -,...Ch. 17 - PRACTICE 17.13 Consider the thermal decomposition...Ch. 17 - Prob. 17.14ACh. 17 - Prob. 17.15PCh. 17 - Prob. 17.16ACh. 17 - Prob. 17.17PCh. 17 - Prob. 17.18ACh. 17 - Prob. 17.19PCh. 17 - Prob. 17.20ACh. 17 - Prob. 17.21PCh. 17 - APPLY 17.22 If the vapour pressure of ethanol (...Ch. 17 - Prob. 17.23PCh. 17 - Prob. 17.24PCh. 17 - Prob. 17.25PCh. 17 - Prob. 17.26PCh. 17 - Prob. 17.27PCh. 17 - 17.28 Consider the gas-phase reaction of AB3 and...Ch. 17 - 17.29 Ideal gases A (red spheres) and B (blue...Ch. 17 - What are the signs (+, —, or 0) of H, S, and G...Ch. 17 - Prob. 17.31CPCh. 17 - Prob. 17.32CPCh. 17 - 17.33 Consider the following spontaneous reaction...Ch. 17 - Prob. 17.34CPCh. 17 - Consider again the dissociation reaction A2g 2...Ch. 17 - Prob. 17.36CPCh. 17 - Prob. 17.37CPCh. 17 - Prob. 17.38CPCh. 17 - Prob. 17.39CPCh. 17 - Which of the following processes are spontaneous,...Ch. 17 - Prob. 17.41SPCh. 17 - Assuming that gaseous reactants and products are...Ch. 17 - Prob. 17.43SPCh. 17 - Prob. 17.44SPCh. 17 - Prob. 17.45SPCh. 17 - 17.46 Predict the sign of the entropy change in...Ch. 17 - Predict the sign of S in the system for each of...Ch. 17 - Prob. 17.48SPCh. 17 - Prob. 17.49SPCh. 17 - Prob. 17.50SPCh. 17 - Prob. 17.51SPCh. 17 - Prob. 17.52SPCh. 17 - Prob. 17.53SPCh. 17 - Prob. 17.54SPCh. 17 - Prob. 17.55SPCh. 17 - Prob. 17.56SPCh. 17 - Prob. 17.57SPCh. 17 - Prob. 17.58SPCh. 17 - Prob. 17.59SPCh. 17 - Prob. 17.60SPCh. 17 - Prob. 17.61SPCh. 17 - Prob. 17.62SPCh. 17 - Prob. 17.63SPCh. 17 - Prob. 17.64SPCh. 17 - Prob. 17.65SPCh. 17 - Prob. 17.66SPCh. 17 - Prob. 17.67SPCh. 17 - Prob. 17.68SPCh. 17 - Prob. 17.69SPCh. 17 - Prob. 17.70SPCh. 17 - Prob. 17.71SPCh. 17 - Prob. 17.72SPCh. 17 - Prob. 17.73SPCh. 17 - Prob. 17.74SPCh. 17 - Prob. 17.75SPCh. 17 - Prob. 17.76SPCh. 17 - Prob. 17.77SPCh. 17 - Prob. 17.78SPCh. 17 - Prob. 17.79SPCh. 17 - Prob. 17.80SPCh. 17 - Prob. 17.81SPCh. 17 - Prob. 17.82SPCh. 17 - Prob. 17.83SPCh. 17 - Prob. 17.84SPCh. 17 - Prob. 17.85SPCh. 17 - Prob. 17.86SPCh. 17 - Prob. 17.87SPCh. 17 - Prob. 17.88SPCh. 17 - Prob. 17.89SPCh. 17 - Prob. 17.90SPCh. 17 - Prob. 17.91SPCh. 17 - Use the data in Appendix B to calculate H° and ...Ch. 17 - Prob. 17.93SPCh. 17 - Prob. 17.94SPCh. 17 - Prob. 17.95SPCh. 17 - Prob. 17.96SPCh. 17 - Prob. 17.97SPCh. 17 - Use the values of G°, in Appendix B to calculate...Ch. 17 - Prob. 17.99SPCh. 17 - Prob. 17.100SPCh. 17 - Prob. 17.101SPCh. 17 - Prob. 17.102SPCh. 17 - Prob. 17.103SPCh. 17 - Prob. 17.104SPCh. 17 - Prob. 17.105SPCh. 17 - Prob. 17.106SPCh. 17 - Prob. 17.107SPCh. 17 - Prob. 17.108SPCh. 17 - Prob. 17.109SPCh. 17 - Prob. 17.110SPCh. 17 - Prob. 17.111SPCh. 17 - Prob. 17.112SPCh. 17 - Prob. 17.113SPCh. 17 - Prob. 17.114SPCh. 17 - Prob. 17.115SPCh. 17 - Prob. 17.116SPCh. 17 - Prob. 17.117SPCh. 17 - Prob. 17.118SPCh. 17 - Prob. 17.119SPCh. 17 - Prob. 17.120CPCh. 17 - Prob. 17.121CPCh. 17 - Prob. 17.122CPCh. 17 - Prob. 17.123CPCh. 17 - Prob. 17.124CPCh. 17 - Prob. 17.125CPCh. 17 - Prob. 17.126CPCh. 17 - Prob. 17.127CPCh. 17 - Prob. 17.128CPCh. 17 - Prob. 17.129CPCh. 17 - Prob. 17.130CPCh. 17 - Use the data in Appendix B to calculate H°, S°,...Ch. 17 - Prob. 17.132CPCh. 17 - Prob. 17.133CPCh. 17 - Nickel tetracarbonyl, a volatile liquid used to...Ch. 17 - Prob. 17.135CPCh. 17 - Prob. 17.136CPCh. 17 - Prob. 17.137CPCh. 17 - Prob. 17.138CPCh. 17 - Prob. 17.139CPCh. 17 - Prob. 17.140CPCh. 17 - Prob. 17.141CPCh. 17 - Prob. 17.142CPCh. 17 - Prob. 17.143CPCh. 17 - Prob. 17.144CPCh. 17 - Prob. 17.145CPCh. 17 - Prob. 17.146CPCh. 17 - Consider the equilibriumN2O42NO2g. (a) Use the...Ch. 17 - Prob. 17.148MPCh. 17 - Prob. 17.149MPCh. 17 - Prob. 17.150MPCh. 17 - Prob. 17.151MPCh. 17 - Prob. 17.152MPCh. 17 - Prob. 17.153MPCh. 17 - Prob. 17.154MPCh. 17 - Prob. 17.155MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY