EBK GET READY FOR ORGANIC CHEMISTRY
EBK GET READY FOR ORGANIC CHEMISTRY
2nd Edition
ISBN: 8220100576379
Author: KARTY
Publisher: PEARSON
Question
Book Icon
Chapter 17, Problem 17.18P
Interpretation Introduction

Interpretation:

The complete, detailed mechanism for the given reaction is to be drawn, and the major organic product is to be predicted, paying attention to stereochemistry.

Concept introduction:

Wittig reagents are the compounds that are used to synthesize alkenes. A Wittig reagent is characterized by a C-P bond in which the carbon bears a -1 formal charge and phosphorous bears a +1 formal charge. This reagent is also called phosphorous ylide, which is highly nucleophilic at the carbon atom. Wittig reagent reacts with aldehydes and ketones to form alkenes. Wittig reaction results in the joining of two carbon-containing groups by a C=C bond, where one group is from the Wittig reagent and the second is from the ketone or aldehyde. Thus, a new C=C is formed between the original carbonyl carbon and the original C-P carbon from ylide. Thus, the C=O bond of a ketone or aldehyde is converted into a C=C bond. The mixture of stereoisomers is formed at the end of this reaction as the major organic product. In step one of this mechanism, the highly nucleophilic carbon atom of the Wittig reagent attacks the electrophilic carbonyl carbon, yielding a betaine. Step two is a coordination step, in which a bond is formed between the negatively charged oxygen atom and the positively charged phosphorous atom. This results in an oxaphosphetane that contains a four-membered ring, which, due to the strain, falls apart into the alkene and triphenylphosphine. The first two steps of the Wittig reaction are driven by the principle of electron-rich and electron-poor sites.

Blurred answer
Students have asked these similar questions
Show that a molecule with configuration π4 has a cylindrically symmetric electron distribution. Hint: Let the π orbitals be equal to xf and yf, where f is a function that depends only on the distance from the internuclear axis.
(a) Verify that the lattice energies of the alkali metal iodides are inversely proportional to the distances between the ions in MI (M = alkali metal) by plotting the lattice energies given below against the internuclear distances dMI. Is the correlation good? Would a better fit be obtained by plotting the lattice energies as a function of (1 — d*/d)/d, as theoretically suggested, with d* = 34.5 pm? You must use a standard graphing program to plot the graph. It generates an equation for the line and calculates a correlation coefficient. (b) From the graph obtained in (a), estimate the lattice energy of silver iodide. (c) Compare the results of (b) with the experimental value of 886 kJ/mol. If they do not agree, explain the deviation.
Can I please get help with #3 & 4? Thanks you so much!

Chapter 17 Solutions

EBK GET READY FOR ORGANIC CHEMISTRY

Ch. 17 - Prob. 17.11PCh. 17 - Prob. 17.12PCh. 17 - Prob. 17.13PCh. 17 - Prob. 17.14PCh. 17 - Prob. 17.15PCh. 17 - Prob. 17.16PCh. 17 - Prob. 17.17PCh. 17 - Prob. 17.18PCh. 17 - Prob. 17.19PCh. 17 - Prob. 17.20PCh. 17 - Prob. 17.21PCh. 17 - Prob. 17.22PCh. 17 - Prob. 17.23PCh. 17 - Prob. 17.24PCh. 17 - Prob. 17.25PCh. 17 - Prob. 17.26PCh. 17 - Prob. 17.27PCh. 17 - Prob. 17.28PCh. 17 - Prob. 17.29PCh. 17 - Prob. 17.30PCh. 17 - Prob. 17.31PCh. 17 - Prob. 17.32PCh. 17 - Prob. 17.33PCh. 17 - Prob. 17.34PCh. 17 - Prob. 17.35PCh. 17 - Prob. 17.36PCh. 17 - Prob. 17.37PCh. 17 - Prob. 17.38PCh. 17 - Prob. 17.39PCh. 17 - Prob. 17.40PCh. 17 - Prob. 17.41PCh. 17 - Prob. 17.42PCh. 17 - Prob. 17.43PCh. 17 - Prob. 17.44PCh. 17 - Prob. 17.45PCh. 17 - Prob. 17.46PCh. 17 - Prob. 17.47PCh. 17 - Prob. 17.48PCh. 17 - Prob. 17.49PCh. 17 - Prob. 17.50PCh. 17 - Prob. 17.51PCh. 17 - Prob. 17.52PCh. 17 - Prob. 17.53PCh. 17 - Prob. 17.54PCh. 17 - Prob. 17.55PCh. 17 - Prob. 17.56PCh. 17 - Prob. 17.57PCh. 17 - Prob. 17.58PCh. 17 - Prob. 17.59PCh. 17 - Prob. 17.60PCh. 17 - Prob. 17.61PCh. 17 - Prob. 17.62PCh. 17 - Prob. 17.63PCh. 17 - Prob. 17.64PCh. 17 - Prob. 17.65PCh. 17 - Prob. 17.66PCh. 17 - Prob. 17.67PCh. 17 - Prob. 17.68PCh. 17 - Prob. 17.69PCh. 17 - Prob. 17.70PCh. 17 - Prob. 17.71PCh. 17 - Prob. 17.72PCh. 17 - Prob. 17.73PCh. 17 - Prob. 17.74PCh. 17 - Prob. 17.75PCh. 17 - Prob. 17.76PCh. 17 - Prob. 17.77PCh. 17 - Prob. 17.78PCh. 17 - Prob. 17.79PCh. 17 - Prob. 17.80PCh. 17 - Prob. 17.81PCh. 17 - Prob. 17.82PCh. 17 - Prob. 17.83PCh. 17 - Prob. 17.84PCh. 17 - Prob. 17.1YTCh. 17 - Prob. 17.2YTCh. 17 - Prob. 17.3YTCh. 17 - Prob. 17.4YTCh. 17 - Prob. 17.5YTCh. 17 - Prob. 17.6YTCh. 17 - Prob. 17.7YTCh. 17 - Prob. 17.8YTCh. 17 - Prob. 17.9YTCh. 17 - Prob. 17.10YTCh. 17 - Prob. 17.11YTCh. 17 - Prob. 17.12YTCh. 17 - Prob. 17.13YTCh. 17 - Prob. 17.14YT
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY