Bundle: Principles Of Geotechnical Engineering, Loose-leaf Version, 9th + Mindtap Engineering, 2 Terms (12 Months) Printed Access Card
Bundle: Principles Of Geotechnical Engineering, Loose-leaf Version, 9th + Mindtap Engineering, 2 Terms (12 Months) Printed Access Card
9th Edition
ISBN: 9781337583817
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
Question
Book Icon
Chapter 17, Problem 17.10P
To determine

Find the modulus elasticity of the foundation soil with the various depth.

Expert Solution & Answer
Check Mark

Answer to Problem 17.10P

The modulus elasticity of the foundation soil at the depth 1m is 9,335kN/m2_.

The modulus elasticity of the foundation soil at the depth 2.5m is 12,446kN/m2_.

The modulus elasticity of the foundation soil at the depth 4m is 17,115kN/m2_.

The modulus elasticity of the foundation soil at the depth 5.5m is 20,227kN/m2_.

The modulus elasticity of the foundation soil at the depth 7m is 21,784kN/m2_.

The modulus elasticity of the foundation soil at the depth 8.5m is 24,896kN/m2_.

Explanation of Solution

Given information:

The atmospheric pressure is (pa) 100kN/m2.

Assume the grain size (D50) 0.46mm.

Show the depth and number of blows shown in table:

Depth,(m)N60
16
2.58
411
5.513
714
8.516

Calculation:

Show the expression of correlation between qcandN60 using the Equation:

(qcpa)N60=cD50a (1)

Here, pa is atmospheric pressure, N60 is standard penetration resistance, c and a as developed from various studies.

For c and a value given by Kulhawy and Mayne(1990).

Refer Table 17.7 in section 17.11 “Cone penetration test” in the textbook.

ca
5.440.26

Find the variation of cone penetration resistance with various depth 1m

Substitute 100kN/m2 for pa, 0.46mm for D50, 5.44 for c, 0.26 for a, and 6 for N60 in Equation (1).

(qc100)6=5.44(0.46)0.26(qc100)6=4.4454(qc100)=26.67qc=2,667kN/m2

Find the variation of cone penetration resistance with various depth 2.5m.

Substitute 100kN/m2 for pa, 0.46mm for D50, 5.44 for c, 0.26 for a, and 8 for N60 in Equation (1).

(qc100)6=5.44(0.46)0.26(qc100)8=4.4454(qc100)=35.56qc=3,556kN/m2

Find the variation of cone penetration resistance with various depth 4m.

Substitute 100kN/m2 for pa, 0.46mm for D50, 5.44 for c, 0.26 for a, and 11 for N60 in Equation (1).

(qc100)6=5.44(0.46)0.26(qc100)11=4.4454(qc100)=48.89qc=4,890kN/m2

Find the variation of cone penetration resistance with various depth 5.5m.

Substitute 100kN/m2 for pa, 0.46mm for D50, 5.44 for c, 0.26 for a, and 13 for N60 in Equation (1).

(qc100)6=5.44(0.46)0.26(qc100)13=4.4454(qc100)=57.79qc=5,779kN/m2

Find the variation of cone penetration resistance with various depth 7m.

Substitute 100kN/m2 for pa, 0.46mm for D50, 5.44 for c, 0.26 for a, and 14 for N60 in Equation (1).

(qc100)6=5.44(0.46)0.26(qc100)14=4.4454(qc100)=62.236qc=6,224kN/m2

Find the variation of cone penetration resistance with various depth 8.5m.

Substitute 100kN/m2 for pa, 0.46mm for D50, 5.44 for c, 0.26 for a, and 16 for N60 in Equation (1).

(qc100)6=5.44(0.46)0.26(qc100)16=4.4454(qc100)=71.13qc=7,113kN/m2

Show the expression of modulus elasticity (Es) as follows:

Es=3.5qc (1)

Here, qc is cone penetration resistance.

Find the modulus elasticity of the foundation soil at the depth 1m using the Equation:

Substitute 2,667kN/m2 for qc in Equation (1).

Es=3.5×2,667=9,334.5kN/m2

Thus, the modulus elasticity of the foundation soil at the depth 1m is 9,335kN/m2_.

Find the modulus elasticity of the foundation soil at the depth 2.5m using the Equation:

Substitute 3,556kN/m2 for qc in Equation (1).

Es=3.5×3,556=12,446kN/m2

Thus, the modulus elasticity of the foundation soil at the depth 2.5m is 12,446kN/m2_.

Find the modulus elasticity of the foundation soil at the depth 4m using the Equation:

Substitute 4,890kN/m2 for qc in Equation (1).

Es=3.5×4,890=17,115kN/m2

Thus, the modulus elasticity of the foundation soil at the depth 4m is 17,115kN/m2_.

Find the modulus elasticity of the foundation soil at the depth 5.5m using the Equation:

Substitute 5,779kN/m2 for qc in Equation (1).

Es=3.5×5,779=20,227kN/m2

Thus, the modulus elasticity of the foundation soil at the depth 5.5m is 20,227kN/m2_.

Find the modulus elasticity of the foundation soil at the depth 7m using the Equation:

Substitute 6,224kN/m2 for qc in Equation (1).

Es=3.5×6224=21,784kN/m2

Thus, the modulus elasticity of the foundation soil at the depth 7m is 21,784kN/m2_.

Find the modulus elasticity of the foundation soil at the depth 8.5m using the Equation:

Substitute 7,113kN/m2 for qc in Equation (1).

Es=3.5×7,113=24,896kN/m2

Thus, the modulus elasticity of the foundation soil at the depth 8.5m is 24,896kN/m2_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Draw the shear and bending moment diagrams and find the immediate deflection for a simply supported beam of length 20 ft. with the same live load at ½ span and cross-section as the previous problem. Assume a reasonable Modulus of Elasticity and concrete self-weight. Hint: You may look online for typical concrete self-weights and compressive strengths. You may also use the ACI 318 Code equation for the Modulus of Elasticity shown below, and the supplied Design Aids.
Problem 4. A major transmission pathway of the novel coronavirus disease 2019 (COVID- 19) is through droplets and aerosols produced by violent respiratory events such as sneezes and coughs (Fig. 1). For the purpose of providing public health guidelines, we would like to estimate the amount of time it takes for these droplets to settle from air to the ground. The relevant parameters are the settling time (ts), the initial height of the droplets (H), gravitational acceleration (g), density of the droplets (pa), radius of the droplets (R), as well as dynamic viscosity of the ambient air (Pair). Use dimensional analysis and the Buckingham theorem to answer the following questions: 1. Find the independent dimensionless parameters using the table method. Then, express the settling time as a function of the other relevant parameters. Your solution should match the physical intuition that the settling time scales linearly with the initial height. 2. How would the settling change if the…
Question 4 An engineer is assigned to design a 25-stories office building which has a building height of 75 m. Reinforced concrete shear wall system as shown in Figure Q1(a) is adopted to resist the lateral loads. The shear wall is of thickness t = 350 mm and length L = 8.5 m. Use the following data: Young's modulus of concrete E = 28 kN/mm² and the lateral load intensity w = 1.20 kN/m². Assuming the frontal width of the building façade is 15 m is facing the wind force which in turn transmitting the wind force to the shear wall system, estimate the total value of sway A at the roof level. Question 5 For the Shear Wall in Question 4, if the total ultimate gravity load of the building acted on shear wall is 6000 KN, using a partial factor of 1.2 for the wind load, calculate the stress on the extreme right corner of the shear wall at first storey level. (A) 9.46 mm (B) 189.26 mm (C) 14.20 mm (D) 141.95 mm STOREY FLOOR LEV Shear wall Figure Q1(a) (A) 3.228 N/sq mm (B) 14.029 N/sq mm 75 m…
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning