EBK PRINCIPLES OF GEOTECHNICAL ENGINEER
EBK PRINCIPLES OF GEOTECHNICAL ENGINEER
9th Edition
ISBN: 9781337517218
Author: SOBHAN
Publisher: VST
Question
Book Icon
Chapter 17, Problem 17.10P
To determine

Find the modulus elasticity of the foundation soil with the various depth.

Expert Solution & Answer
Check Mark

Answer to Problem 17.10P

The modulus elasticity of the foundation soil at the depth 1m is 9,335kN/m2_.

The modulus elasticity of the foundation soil at the depth 2.5m is 12,446kN/m2_.

The modulus elasticity of the foundation soil at the depth 4m is 17,115kN/m2_.

The modulus elasticity of the foundation soil at the depth 5.5m is 20,227kN/m2_.

The modulus elasticity of the foundation soil at the depth 7m is 21,784kN/m2_.

The modulus elasticity of the foundation soil at the depth 8.5m is 24,896kN/m2_.

Explanation of Solution

Given information:

The atmospheric pressure is (pa) 100kN/m2.

Assume the grain size (D50) 0.46mm.

Show the depth and number of blows shown in table:

Depth,(m)N60
16
2.58
411
5.513
714
8.516

Calculation:

Show the expression of correlation between qcandN60 using the Equation:

(qcpa)N60=cD50a (1)

Here, pa is atmospheric pressure, N60 is standard penetration resistance, c and a as developed from various studies.

For c and a value given by Kulhawy and Mayne(1990).

Refer Table 17.7 in section 17.11 “Cone penetration test” in the textbook.

ca
5.440.26

Find the variation of cone penetration resistance with various depth 1m

Substitute 100kN/m2 for pa, 0.46mm for D50, 5.44 for c, 0.26 for a, and 6 for N60 in Equation (1).

(qc100)6=5.44(0.46)0.26(qc100)6=4.4454(qc100)=26.67qc=2,667kN/m2

Find the variation of cone penetration resistance with various depth 2.5m.

Substitute 100kN/m2 for pa, 0.46mm for D50, 5.44 for c, 0.26 for a, and 8 for N60 in Equation (1).

(qc100)6=5.44(0.46)0.26(qc100)8=4.4454(qc100)=35.56qc=3,556kN/m2

Find the variation of cone penetration resistance with various depth 4m.

Substitute 100kN/m2 for pa, 0.46mm for D50, 5.44 for c, 0.26 for a, and 11 for N60 in Equation (1).

(qc100)6=5.44(0.46)0.26(qc100)11=4.4454(qc100)=48.89qc=4,890kN/m2

Find the variation of cone penetration resistance with various depth 5.5m.

Substitute 100kN/m2 for pa, 0.46mm for D50, 5.44 for c, 0.26 for a, and 13 for N60 in Equation (1).

(qc100)6=5.44(0.46)0.26(qc100)13=4.4454(qc100)=57.79qc=5,779kN/m2

Find the variation of cone penetration resistance with various depth 7m.

Substitute 100kN/m2 for pa, 0.46mm for D50, 5.44 for c, 0.26 for a, and 14 for N60 in Equation (1).

(qc100)6=5.44(0.46)0.26(qc100)14=4.4454(qc100)=62.236qc=6,224kN/m2

Find the variation of cone penetration resistance with various depth 8.5m.

Substitute 100kN/m2 for pa, 0.46mm for D50, 5.44 for c, 0.26 for a, and 16 for N60 in Equation (1).

(qc100)6=5.44(0.46)0.26(qc100)16=4.4454(qc100)=71.13qc=7,113kN/m2

Show the expression of modulus elasticity (Es) as follows:

Es=3.5qc (1)

Here, qc is cone penetration resistance.

Find the modulus elasticity of the foundation soil at the depth 1m using the Equation:

Substitute 2,667kN/m2 for qc in Equation (1).

Es=3.5×2,667=9,334.5kN/m2

Thus, the modulus elasticity of the foundation soil at the depth 1m is 9,335kN/m2_.

Find the modulus elasticity of the foundation soil at the depth 2.5m using the Equation:

Substitute 3,556kN/m2 for qc in Equation (1).

Es=3.5×3,556=12,446kN/m2

Thus, the modulus elasticity of the foundation soil at the depth 2.5m is 12,446kN/m2_.

Find the modulus elasticity of the foundation soil at the depth 4m using the Equation:

Substitute 4,890kN/m2 for qc in Equation (1).

Es=3.5×4,890=17,115kN/m2

Thus, the modulus elasticity of the foundation soil at the depth 4m is 17,115kN/m2_.

Find the modulus elasticity of the foundation soil at the depth 5.5m using the Equation:

Substitute 5,779kN/m2 for qc in Equation (1).

Es=3.5×5,779=20,227kN/m2

Thus, the modulus elasticity of the foundation soil at the depth 5.5m is 20,227kN/m2_.

Find the modulus elasticity of the foundation soil at the depth 7m using the Equation:

Substitute 6,224kN/m2 for qc in Equation (1).

Es=3.5×6224=21,784kN/m2

Thus, the modulus elasticity of the foundation soil at the depth 7m is 21,784kN/m2_.

Find the modulus elasticity of the foundation soil at the depth 8.5m using the Equation:

Substitute 7,113kN/m2 for qc in Equation (1).

Es=3.5×7,113=24,896kN/m2

Thus, the modulus elasticity of the foundation soil at the depth 8.5m is 24,896kN/m2_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q5: Given the following system: น -3 y= [4 -2] +3u Generate a model with states that are the sum and difference of the original states.
4. Draw a stress-strain curve (in tension and compression) for a reinforced concrete beam below. Label the important parts of the plot. Find the linear elastic approximation obtained using the transformed technique, and plot over the same strain ranges. 24" 4" 20" 16" f = 8,000 psi 8- #11 bars Grade 60 steel 4" (f, = 60 ksi and E₁ = 29000 ksi)
Why is Historical Data important compared to other sourses of information when estimating construction projects?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning