(a)
Interpretation:
The below equation through change in oxidation number method has to be balanced.
Concept Introduction:
Steps for change in oxidation number method to
1 Oxidation number of each element has to be assigned and change in oxidation number has to be identified. Then add electrons to balance charge.
2 Two half-reactions with only elements that have changed oxidation numbers have to be formed.
3 Both reactions multiplied by smallest whole number that can make electrons lost equal to electron gained.
4 Coefficient should transfer to original equation.
5 Remaining oxygen atoms are balanced through water molecules.
6 For acidic medium, charge is balanced by addition of
(a)
Explanation of Solution
Given reaction is as follows:
Oxidation number of each element in equation (1) can be assigned as follows:
Change in oxidation number occurred in copper and oxygen thus two half-reactions can be formed as follows:
Oxidation half-reaction for copper is as follows:
Reduction half-reaction for oxygen is as follows:
Multiply equation (2) by 2 so that number of electrons gained and lost becomes same and cancels each other. Thus, equation (2) is as follows:
Coefficient of atoms in equation (3) and equation (4) of half reactions gets transfer to equation (1). Remaining atoms are balanced by equalizing its number on both sides. Thus balanced equation is as follows:
(b)
Interpretation:
The below equation through change in oxidation number method has to be balanced.
Concept Introduction:
Refer to part (a).
(b)
Explanation of Solution
Given reaction is as follows:
Oxidation number of each element in equation (5) can be assigned as follows:
Change in oxidation number occurred in oxygen and chlorine thus two half-reactions can be formed as follows:
Oxidation half-reaction for oxygen is as follows:
Reduction half-reaction for chlorine is as follows:
Coefficient of atoms in both half reactions gets transfer to equation (5). Remaining atoms are balanced by equalizing its number on both sides. Thus balanced equation is as follows:
(c)
Interpretation:
The below equation through change in oxidation number method has to be balanced.
Concept Introduction:
Refer to part (a).
(c)
Explanation of Solution
Given reaction is as follows:
Oxidation number of each element in equation (9) can be assigned as follows:
Change in oxidation number occurred in calcium and hydrogen thus two balanced half-reactions can be formed as follows:
Balanced oxidation half-reaction for calcium is as follows:
Balanced reduction half-reaction for hydrogen is as follows:
Coefficient of atoms in equation (10) and equation (11) of half reactions gets transfer to equation (9). Remaining atoms are balanced by equalizing its number on both sides. Thus balanced equation is as follows:
(d)
Interpretation:
The below equation through change in oxidation number method has to be balanced.
Concept Introduction:
Refer to part (a).
(d)
Explanation of Solution
Given reaction is as follows:
Oxidation number of each element in equation (12) can be assigned as follows:
Change in oxidation number occurred in sulfur and oxygen thus two balanced half-reactions can be formed as follows:
Balanced oxidation half-reaction for sulfur is as follows:
Balanced reduction half-reaction for oxygen is as follows:
Multiply equation (14) by 4 so that number of electrons gained and lost becomes same and cancels each other. Thus, equation (14) becomes as follows:
Coefficient of atoms in equation (13) and equation (15) of half reactions gets transfer to equation (12). Remaining atoms are balanced by equalizing its number on both sides. Thus balanced equation is as follows:
(e)
Interpretation:
The below equation through change in oxidation number method has to be balanced.
Concept Introduction:
Refer to part (a).
(e)
Explanation of Solution
Given reaction is as follows:
Oxidation number of each element in equation (16) can be assigned as follows:
Change in oxidation number occurred in carbon and nitrogen thus two balanced half-reactions can be formed as follows:
Balanced oxidation half-reaction for carbon is as follows:
Balanced reduction half-reaction for nitrogen is as follows:
Coefficient of atoms in equation (17) and equation (18) of half reactions gets transfer to equation (19). Remaining atoms are balanced by equalizing its number on both sides. Thus balanced equation is as follows:
Want to see more full solutions like this?
Chapter 17 Solutions
EBK FOUNDATIONS OF COLLEGE CHEMISTRY
- The Toliens test for the presence of reducing sugars (say, in a urine sample) involves treating the sample with silver ions in aqueous ammonia. The result is the formation of a silver mirror within the reaction vessel if a reducing sugar is present. Using glucose, C6H12O6, to illustrate this test, the oxidation-reduction reaction occurring is C6H12O6 (aq) + 2 Ag+(aq) + 2OH(aq) C6H12O7(aq) + 2 Ag(s) + H2O() What has been oxidized, and what has been reduced? What is the oxidizing agent, and what is the reducing agent? Tolien's test. The reaction of silver ions with a sugar such as glucose produces metallic silver. (a) The set-up for the reaction. (b) The silvered test tubearrow_forwardWhich two of the following reactions are oxidation-reduction reactions? Explain your answer briefly. Classify the remaining reaction. (a) CdC12(aq) + Na2S(aq) CdS(s) + 2 NaCl(aq) (b) 2 Ca(s) + O2(g) 2 CaO(s) (c) 4 Fe(OH)2(s) + 2 H2O() + O2(g) 4 Fe(OH)3(s)arrow_forwardThe Ostwald process for the commercial production of nitric acid involves the Following three steps: 4NH3(g)+5O2(g)4NO(g)+6H2O(s)2NO(g)+O2(g)2NO2(g)3NO2(g)+H2O(l)2HNO3(aq)+NO(g) a. Which reaction in the Ostwald process are oxidation-reduction reactions? b. Identify each oxidizing agent and reducing agent.arrow_forward
- Determine the oxidation number of each element in each of the following compounds: (a) HCN (b) OF2 (c) ASCl3arrow_forwardChromium has been investigated as a coating for steel cans. The thickness of the chromium film is determined by dissolving a sample of a can in acid and oxidizing the resulting Cr3+ to Cr2O72 with the peroxydisulfate ion: S2O82(aq) + Cr3+(aq) + H2O(l) Cr2O72(aq) + SO42(aq) + H+(aq) (Unbalanced) After removal of unreacted S2O82 an excess of ferrous ammonium sulfate [Fe(NH4)2(SO4)26H2O] is added, reacting with Cr2O72 produced from the first reaction. The unreacted Fe2+ from the excess ferrous ammonium sulfate is titrated with a separate K2Cr2O7 solution. The reaction is: H+(aq) + Fe2+(aq) + Cr2O72(aq) Fe3+(aq) + Cr3+(aq) + H2O(l) (Unbalanced) a. Write balanced chemical equations for the two reactions. b. In one analysis, a 40.0-cm2 sample of a chromium-plated can was treated according to this procedure. After dissolution and removal of excess S2O82, 3.000 g of Fe(NH4)2(SO4)26H2O was added. It took 8.58 mL of 0.0520 M K2Cr2O7 solution to completely react with the excess Fe2+. Calculate the thickness of the chromium film on the can. (The density of chromium is 7.19 g/cm3)arrow_forwardBalance each of the following oxidationreduction reactions by using the oxidation states method. a.Cl2(g) + Al(s) Al3+(aq) + Cl(aq) b.O2(g) + H2O(l) + Pb(s) Pb(OH)2(s) c.H+(aq)+MnO4(aq)+Fe2+(aq)Mn2+(aq)+Fe3+(aq)+H2O(l)arrow_forward
- Complete and balance the following oxidation-reduction reactions, which give the highest possible oxidation state for the oxidized atoms. (a) Al(s)+F2(g) (b) Al(s)+CuBr2(aq) (single displacement) (c) P4(s)+O2(g) (d) Ca(s)+H2O(l) (products are a strong base and a diatomic gas)arrow_forwardBalance each of the following oxidationreduction reactions by using the oxidation states method. a. C2H6(g) + O2(g) CO2(g) + H2O(g) b. Mg(s) + HCl(aq) Mg2+(aq) + Cl(aq) + H2(g) c. Co3+ (aq) + Ni(s) Co2+(aq) + Ni2+(aq) d. Zn(s) + H2SO4(aq) ZnSO4(aq) + H2(g)arrow_forwardFour metals, A, B, C, and D, exhibit the following properties: (a) Only A and C react with 1.0 M hydrochloric acid to give H2(g). (b) When C is added to solutions of the ions of the other metals, metallic B, D, and A are formed. (c) Metal D reduces Bn+ to give metallic B and Dn+. Based on this information, arrange the four metals in order of increasing ability to act as reducing agents.arrow_forward
- (a) Rank the following metals in their ability to function as reducing agents: Hg, Sn, and Pb. (b) Which halogens will oxidize mercury to mercury(II)?arrow_forwardWhat does it mean for a substance to be oxidized? The term “oxidation” originally came from substances reacting with oxygen gas. Explain why a substance that reacts with oxygen gas will always be oxidized.arrow_forwardBalance each of the following oxidationreduction reactions by using the oxidation states method. a.C2H4(g) + O2(g) CO3(g) + H2O(g) b. Mg(s) + HCl(aq) Mg2+(aq) + Cl(aq) + H2(g) c.Co3+(aq) + Ni(s) Co2+(aq) + Ni2+(aq) d.Zn(s) + H2SO4(aq) ZnSo4(aq) + H2(g)arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning