STARTING OUT WITH C++ MPL
9th Edition
ISBN: 9780136673989
Author: GADDIS
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 10PC
Program Plan Intro
List Sort
Program Plan:
- Include the required specifications into the program.
- Declare a class ListNode.
- Declare the member variables “value” and “*p” in structure named “ListNode”.
- The data value of node is stored in variable v and address to next pointer is stored in pointer p
- Declare the constructor, destructor, and member functions in the class.
- Declare the structure variable “next” and a friend class Linked List
- Declare a class LinkList.
- Function to check whether a particular node with a data value n is a part of linked list or not “bool isMember(double n)”.
- A recursive print method is defined to print all the data values present in the link list “void rPrint()”.
- A link list method to insert elements into the link list called “void LinkedList::insert(double x, int pos)” is called that insert elements into the link list at specific positions.
- A link list method called “void LinkedList::sort()” to sort all the elements present in the list according to their data values and then print the sorted list.
- A link list method to remove elements from the link list called is called
“void LinkedList::removeByPos(int pos)” that removes elements from the link list at specific positions.
- A method to search for an element present in the link list called “ int LinkedList::search(double x)” is called that returns the position of the element present in the link list.
- A destructor is called to delete the desired data value entered by the user called “LinkedList::~LinkedList( )”.
- A method to remove the element passed as a parameter from the link list is called “void LinkedList::remove(double x)”.
- Declare a method “void reverse( )” to reverse the elements present in the link list by traversing through the list and Move node at end to the beginning of the new reverse list being constructed.
- Declaration of structure variable head to store the first node of the list “ListNode * head” is defined.
- A function “void LinkedList::add(double n)” is defined which adds or inserts new nodes into the link list.
- A function “bool LinkedList::isMember(double n)” is defined which searches for a given data value within the nodes present in the link list.
- A destructor “LinkedList::~LinkedList()” deallocates the memory for the link list.
- A function “void LinkedList::print()” is used to print all the node data values present in the link list by traversing through each nodes in the link list.
- A recursive member function check is defined called “bool LinkedList::rIsMember(ListNode *pList,double x)” .
- If the data value entered is present within the link list, it returns true, else it returns false.
- Declare the main class.
- Create an empty list to enter the data values into the list.
- Copy is done using copy constructor.
- Input “5” numbers from user and insert the data values into the link list calling “void LinkedList::add(double n)” function.
- Print the data values of the nodes present in the link list.
- “int LinkedList::search(double x)” function is called to search the element present in the link list and prints the position of the element.
- “void LinkedList::removeByPos(int pos)” function is called to remove elements from the link list at specific positions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
C++ function Linked list
Write a function, to be included in an unsorted linked list class, called replaceItem, that will receive two parameters, one called olditem, the other called new item. The function will replace all occurrences of old item with new item (if old item exists !!) and it will return the number of replacements done.
True or False The objects of a class can be stored in an array, but not in a List.
Remove Duplicates
This function will receive a list of elements with duplicate elements, this function should remove the duplicate elements in the list and return a list without duplicate elements. The elements in the returned list must be in the same order that they were found in the list the function received. A duplicate element is an element found more than one time in the specified list.
Chapter 17 Solutions
STARTING OUT WITH C++ MPL
Ch. 17.1 - Prob. 17.1CPCh. 17.1 - Prob. 17.2CPCh. 17.1 - Prob. 17.3CPCh. 17.1 - Prob. 17.4CPCh. 17.2 - Prob. 17.5CPCh. 17.2 - Prob. 17.6CPCh. 17.2 - Why does the insertNode function shown in this...Ch. 17.2 - Prob. 17.8CPCh. 17.2 - Prob. 17.9CPCh. 17.2 - Prob. 17.10CP
Ch. 17 - Prob. 1RQECh. 17 - Prob. 2RQECh. 17 - Prob. 3RQECh. 17 - Prob. 4RQECh. 17 - Prob. 5RQECh. 17 - Prob. 6RQECh. 17 - Prob. 7RQECh. 17 - Prob. 8RQECh. 17 - Prob. 9RQECh. 17 - Write a function void printSecond(ListNode ptr}...Ch. 17 - Write a function double lastValue(ListNode ptr)...Ch. 17 - Write a function ListNode removeFirst(ListNode...Ch. 17 - Prob. 13RQECh. 17 - Prob. 14RQECh. 17 - Prob. 15RQECh. 17 - Prob. 16RQECh. 17 - Prob. 17RQECh. 17 - Prob. 18RQECh. 17 - Prob. 1PCCh. 17 - Prob. 2PCCh. 17 - Prob. 3PCCh. 17 - Prob. 4PCCh. 17 - Prob. 5PCCh. 17 - Prob. 6PCCh. 17 - Prob. 7PCCh. 17 - Prob. 8PCCh. 17 - Prob. 10PCCh. 17 - Prob. 11PCCh. 17 - Prob. 12PCCh. 17 - Running Back Program 17-11 makes a person run from...Ch. 17 - Read , Sort , Merge Using the ListNode structure...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- java data structurearrow_forwardA ____ supports manipulation of items at any point within a linear collection. Question 5 options: dictionary list stack queuearrow_forwardstruct Node { int data; Node * next; }; Node • head; a. Write a function named addNode that takes in a variable of type int and inserts it at the head of the list. b. Write a function named removeNode that removes a node at the head of the list.arrow_forward
- struct nodeType { int infoData; nodeType * next; }; nodeType *first; … and containing the values(see image) Using a loop to reach the end of the list, write a code segment that deletes all the nodes in the list. Ensure the code performs all memory ‘cleanup’ functions.arrow_forwardflip_matrix(mat:list)->list You will be given a single parameter a 2D list (A list with lists within it) this will look like a 2D matrix when printed out, see examples below. Your job is to flip the matrix on its horizontal axis. In other words, flip the matrix horizontally so that the bottom is at top and the top is at the bottom. Return the flipped matrix. To print the matrix to the console: print('\n'.join([''.join(['{:4}'.format(item) for item in row]) for row in mat])) Example: Matrix: W R I T X H D R L G L K F M V G I S T C W N M N F Expected: W N M N F G I S T C L K F M V H D R L G W R I T X Matrix: L C S P Expected: S P L C Matrix: A D J A Q H J C I Expected: J C I A Q H A D Jarrow_forwardQ: Convert this to sorted array #include<iostream> #include"Student.cpp" class StudentList { private: struct ListNode { Student astudent; ListNode *next; }; ListNode *head; public: StudentList(); ~StudentList(); int IsEmpty(); void Add(Student newstudent); void Remove(); void DisplayList(); }; StudentList::StudentList() { head=NULL; }; StudentList::~StudentList() { cout <<"\nDestructing the objects..\n"; while(IsEmpty()!=0) Remove(); if(IsEmpty()==0) cout <<"All students have been deleted from a list\n"; }; int StudentList::IsEmpty() { if(head==NULL) return 0; else return 1; }; void StudentList::Add(Student newstudent) { ListNode *newPtr=new ListNode; if(newPtr==NULL) cout <<"Cannot allocate memory"; else { newPtr->astudent=newstudent; newPtr->next=head; head=newPtr; } }; void StudentList::Remove() { if(IsEmpty()==0) cout <<"List empty on remove"; else { ListNode *temp=head;…arrow_forward
- C++ Programming Language ::::::: Redo the same functions this time as nonmember functions please : NOTE: You can add only one function into the linked list class get_at_position which will return value of element at given position. 1) Insert before tail : Insert a value into a simply linked list, such that it's location will be before tail. So if a list contains {1, 2, 3}, insert before tail value 9 is called, the list will become {1, 2, 9, 3}. 2) Insert before value : Insert a value into a simply linked list, such that it's location will be before a particular value. So if a list contains {1, 2, 3}, insert before 2 value 9 is called, the list will become {1, 9, 2, 3}. 3)Count common elements : Count common values between two simply linked lists.So if a list1 contains {1, 2, 3, 4, 5}, and list2 contains {1, 3, 4, 6}, number of common elements is 3. 4) Check if sorted : Check if elements of simply linked lists are sorted in ascending order or not.So if a list contains {1, 3, 7, 8, 9}…arrow_forwardArithmetic progression def arithmetic_progression(items): An arithmetic progression is a numerical sequence so that the stride between each two consecutive elements is constant throughout the sequence. For example, [4, 8, 12, 16, 20] is an arithmetic progression of length 5, starting from the value 4 with a stride of 4.Given a non-empty list items of positive integers in strictly ascending order, find and return the longest arithmetic progression whose all values exist somewhere in that sequence. Return the answer as a tuple (start, stride, n) of the values that define the progression. To ensure unique results to facilitate automated testing, if there exist several progressions of the same length, this function should return the one with the lowest start. If several progressions of equal length emanate from the lowest start, return the progression with the smallest stride. items Expected result [42] (42, 0, 1) [2, 4, 6, 7, 8, 12, 17] (2, 2, 4) [1, 2, 36, 49, 50, 70, 75, 98,…arrow_forwardArithmetic progression def arithmetic_progression(items): An arithmetic progression is a numerical sequence so that the stride between each two consecutive elements is constant throughout the sequence. For example, [4, 8, 12, 16, 20] is an arithmetic progression of length 5, starting from the value 4 with a stride of 4. Given a non-empty list items of positive integers in strictly ascending order, find and return the longest arithmetic progression whose all values exist somewhere in that sequence. Return the answer as a tuple (start, stride, n) of the values that define the progression. To ensure unique results to facilitate automated testing, if there exist several progressions of the same length, this function should return the one with the lowest start. If several progressions of equal length emanate from the lowest start, return the progression with the smallest stride. items expected results [42] (42, 0, 1) [2, 4, 6, 7, 8, 12, 17] (2, 2, 4) [1, 2, 36, 49, 50, 70, 75, 98,…arrow_forward
- #include using namespace std; struct ListNode { string data; ListNode *next; }; int main() { ListNode *p, *list; list = new ListNode; list->data = "New York"; p new ListNode; p->data = "Boston"; list->next = p; p->next = new ListNode; p->next->data = "Houston"; p->next->next = nullptr; // new code goes here Which of the following code correctly deletes the node with value "Boston" from the list when added at point of insertion indicated above? O list->next = p; delete p; O p = list->next; %3D list->next = p->next; delete p; p = list->next; list = p->next; delete p; O None of these O p = list->next; %3D list->next = p; %3D delete p;arrow_forwardnumUniqueValues ♡ Language/Type: Related Links: Java Set collections List Write a method named numUnique Values that accepts a List of integers as a parameter and returns the number of unique integer values in the list. For example, if a list named 1 contains the values [3, 7, 3, -1, 2, 3, 7, 2, 15, 15], the call of numUniqueValues (1) should return 5. If passed the empty list, you should return 0. Use a Set as auxiliary storage to help you solve this problem. Do not modify the list passed in. 6 7 8 9 10 Method: Write a Java method as described, not a complete program or class. 12345arrow_forwardCLASSES, DYNAMIC ARRAYS AND POINTERS Define a class called textLines that will be used to store a list of lines of text (each line can be specified as a string). Use a dynamic array to store the list. In addition, you should have a private data member that specifies the length of the list. Create a constructor that takes a file name as parameter, and fills up the list with lines from the file. Make sure that you set the dynamic array to expand large enough to hold all the lines from the file. Also, create a constructor that takes an integer parameter that sets the size of an empty list. in C++ Write member functions to: remove and return the last line from the list add a new line onto the end of the list, if there is room for it, otherwise print a message and expand the array empty the entire list return the number of lines still on the list take two lists and return one combined list (with no duplicates) copy constructor to support deep copying remember the destructor!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr