
a)
The amount of heat required for the process.
a)

Answer to Problem 94RP
The amount of heat required for the process is
Explanation of Solution
Write the energy balance equation for the reported process.
Here, input energy is
Write the expression to obtain the amount of heat required for the process
Here, number of moles is N, internal energy of the system at state 1 is
Write the expression to obtain the internal energy of the system at state 1
Here, enthalpy of the system at state 1 is
Write the expression to obtain the internal energy of the system at state 2
Here, enthalpy of the system at state 2 is
Write the expression to obtain the change in enthalpy of the system
Conclusion:
Substitute
Refer Table A-2c, “Ideal-gas specific heats of various common gases”, obtain the specific heat relation as
Substitute
Here, constants are a, b, c and d.
Refer Table A-2c, “Ideal-gas specific heats of various common gases”, obtain the values of constants a, b, c and d for methane as 19.89,
Substitute 19.89 for a,
Substitute
Thus, the amount of heat required for the process is
b)
The amount of heat required for the process.
b)

Answer to Problem 94RP
The amount of heat required for the process is
Explanation of Solution
Write the stoichiometric reaction for the dissociation process.
From the stoichiometric reaction, infer that the stoichiometric coefficient for methane
Write the expression to obtain the actual reaction for the dissociation process.
From the actual reaction, infer that the equilibrium composition contains x amount of methane
Write the expression to obtain the total number of moles
Here, number of moles of
Write the expression to obtain the equilibrium constant
Here, pressure is P.
Write the expression to obtain the mole fraction of Methane
Write the expression to obtain the mole fraction of carbon
Write the expression to obtain the mole fraction of hydrogen
Write the expression to obtain the amount of heat required for the process
Here, specific heat of methane is
Conclusion:
Write the carbon balance equation from Equation (VIII).
Write the hydrogen balance equation from Equation (VIII).
Substitute x for
Substitute
Substitute 0.641 for x in equation (XV).
Substitute 0.641 for x in equation (XVI).
Substitute 0.641 for x in equation (XVII).
Substitute 0.641 for x, 0.359 for y, and 0.718 for z in Equation (VIII).
Substitute 0.641 for x, and 1.718 for
Substitute 0.359 for x, and 1.718 for
Substitute 0.718 for x, and 1.718 for
Substitute 10 kmol for N, 0.37 for
Thus, the amount of heat required for the process is
Want to see more full solutions like this?
Chapter 16 Solutions
Thermodynamics: An Engineering Approach
- please solve this problems follow what the question are asking to do please show me step by steparrow_forwardplease first write the line action find the forces and them solve the problem step by steparrow_forwardplease solve this problem what the problem are asking to solve please explain step by step and give me the correct answerarrow_forward
- please help me to solve this problem step by steparrow_forwardplease help me to solve this problem and determine the stress for each point i like to be explained step by step with the correct answerarrow_forwardplease solve this problem for me the best way that you can explained to solve please show me the step how to solvearrow_forward
- plese solbe this problem and give the correct answer solve step by step find the forces and line actionarrow_forwardplease help me to solve this problems first write the line of action and them find the forces {fx=0: fy=0: mz=0: and them draw the shear and bending moment diagram. please explain step by steparrow_forwardplease solve this problem step by step like human and give correct answer step by steparrow_forward
- PROBLEM 11: Determine the force, P, that must be exerted on the handles of the bolt cutter. (A) 7.5 N (B) 30.0 N (C) 52.5 N (D) 300 N (E) 325 N .B X 3 cm E 40 cm cm F = 1000 N 10 cm 3 cm boltarrow_forwardUsing the moment-area theorems, determine a) the rotation at A, b) the deflection at L/2, c) the deflection at L/4. (Hint: Use symmetry for Part a (θA= - θB, or θC=0), Use the rotation at A for Parts b and c. Note that all deformations in the scope of our topics are small deformation and for small θ, sinθ=θ).arrow_forwardDistilled water is being cooled by a 20% propylene glycol solution in a 1-1/U counter flow plate and frame heat exchanger. The water enters the heat exchanger at 50°F at a flow rate of 86,000 lbm/h. For safety reasons, the water outlet temperature should never be colder than 35°F. The propylene glycol solution enters the heat exchanger at 28°F with a flow rate of 73,000 lbm/h. The port distances on the heat exchanger are Lv = 35 in and Lh = 18 in. The plate width is Lw = 21.5 2 in. The plate thickness is 0.04 in with a plate pitch of 0.12 in. The chevron angle is 30° and the plate enlargement factor is 1.17. All ports have a 2 in diameter. The fouling factor of the propylene glycol solution can be estimated as 2 ×10−5 h-ft2-°F/Btu. a. Determine the maximum number of plates the heat exchanger can have while ensuring that the water outlet temperature never drops below 35°F. b. Determine the thermal and hydraulic performance of the heat exchanger with the specified number of plates.…arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





