
(a)
The equilibrium composition of product gases.
(a)

Answer to Problem 37P
Thus, the equilibrium composition of mixture of
Explanation of Solution
Write the expression for the volume of oxygen used per lbmol of carbon monoxide
Here, gas constant is R, temperature is T, and pressure is P.
Calculate the mass flow rate of carbon monoxide
Here, volume flow rate of carbon monoxide is
Calculate the molar air fuel ratio
Here, number of moles of oxygen is
Express the stoichiometric reaction for the dissociation process.
From the stoichiometric reaction, infer that the stoichiometric coefficient for carbon monoxide
Express the actual reaction for the dissociation process.
From the actual reaction, infer that the equilibrium composition contains x amount of carbon dioxide
Express the formula for total number of moles
Here, number of moles of carbon dioxide is
Write the expression for the equilibrium constant
Conclusion:
Substitute
Substitute
Substitute
Substitute xfor
Convert the temperature unit from Rankine to Kelvin.
Refer table A-28, “natural logarithm of equilibrium constants”, select the value of
Substitute
Solve the equation and find the value of x as 0.9966.
Substitute 0.9966 for x in Equation (V).
Thus, the equilibrium composition of mixture of
(b)
The rate of heat transfer from the combustion chamber
(b)

Answer to Problem 37P
The rate of heat transfer from the combustion chamber is
Explanation of Solution
Write the expression for the energy balance equation for the combustion process.
Here, heat released during combustion is
Write the expression for the mass flow rate of CO
Write the expression for the rate of heat transfer
Conclusion:
Refer Table A-26, “Enthalpy of formation, Gibbs function of formation, and absolute entropy at
778F, 1 atm”, select the enthalpy of
Refer Table A-21, “Ideal-gas properties of carbon monoxide”, obtain the following properties of
Enthalpy of
Enthalpy of
Enthalpy of
Use interpolation to get the Enthalpy of water vapor at 3600 K
Here, Enthalpy of
Substitute
Refer Table A-26, “Enthalpy of formation, Gibbs function of formation, and absolute entropy at
778F, 1 atm”, select the enthalpy of
Refer Table A-20, ‘Ideal gas properties of carbon dioxide’ find out the following enthalpies at different temperature.
Enthalpy of
Enthalpy of
Enthalpy of
Similarly, use interpolation and obtain the enthalpy of
Refer Table A-26, “Enthalpy of formation, Gibbs function of formation, and absolute entropy at
778F, 1 atm”, select the enthalpy of
Refer Table A-19, ‘Ideal gas properties of oxygen’, choose the enthalpy at the following temperatures.
Enthalpy of
Enthalpy of
Enthalpy of
Similarly, use interpolation and obtain the enthalpy of
Substitute
Substitute
Substitute
Thus, the rate of heat transfer is
Want to see more full solutions like this?
Chapter 16 Solutions
Thermodynamics: An Engineering Approach
- a 300n girl and an 400n boy stand on a 16m platform supported by posts A and B. The platform itself weighs 200N. What are the forces exerted by the supports on the platform?arrow_forwardC A cylindrical piece of steel 38 mm (1½ in.) in diameter is to be quenched in moderately agi- tated oil. Surface and center hardnesses must be at least 50 and 40 HRC, respectively. Which of the following alloys satisfy these requirements: 1040, 5140, 4340, 4140, and 8640? Justify your choice(s).arrow_forwardUsing the isothermal transformation diagram for a 1.13 wt% C steel alloy (Figure 10.39), determine the final microstructure (in terms of just the microconstituents present) of a small specimen that has been subjected to the following time-temperature treatments. In each case assume that the specimen begins at 920°C (1690°F) and that it has been held at this temperature long enough to have achieved a complete and homogeneous austenitic structure. (a) Rapidly cool to 250°C (480°F), hold for 103 s, then quench to room temperature. (b) Rapidly cool to 775°C (1430°F), hold for 500 s, then quench to room temperature. (c) Rapidly cool to 400°C (750°F), hold for 500 s, then quench to room temperature. (d) Rapidly cool to 700°C (1290°F), hold at this temperature for 105 s, then quench to room temperature. (e) Rapidly cool to 650°C (1200°F), hold at this temperature for 3 s, rapidly cool to 400°C (750°F), hold for 25 s, then quench to room temperature. (f) Rapidly cool to 350°C (660°F), hold for…arrow_forward
- How to solve this?arrow_forwardA start-up company wants to convert an ICE vehicle into an electric vehicle with the following specification. Power: 250 (HP) horsepower, (note: 1HP = 745 W) Range: 300-miles Fuel economy: 33.5 kilometers per gallon of gasoline. Efficiency of the ICE: 25% Energy Conversion: One gallon of gasoline at 100% efficiency is equal to 33.5 kWh/gallon). a)Calculate the EV consumption rate as Wh/km and find the total energy of the battery pack in KWh to replace the internal combustion engine. b)Design an 8-module battery pack for this full electric vehicle without compromising its range and performance (power). Use commercially available cylindrical cells lithium cell with 20Ah capacity and 3.125 V average voltage. Cell dimensions are 5cm diameter and 10 cm height. The electric motor requires 250 V input that will be provided directly from the battery pack, Report the configuration of each module in…arrow_forward"11-17 The shaft shown in Figure P11-3 was designed in Problem 10-17. For the data in the row(s) assigned from Table P11-1, and the corresponding diameter of shaft found in Problem 10-17, design suitable bearings to support the load for at least 1E8 cycles at 1800 rpm. State all assumptions. (a) Using hydrodynamically lubricated bronze sleeve bearings with Ox = 15, 11d=0.75, and a clearance ratio of 0.001. ✓ ✓ cast-iron roller FIGURE P11-3 Shaft Design for Problems 11-17 b gear key assume bearings act as simple supports 11-19 The shaft shown in Figure P11-4 was designed in Problem 10-19. For the data in the row(s) assigned from Table P11-1, and the corresponding diameter of shaft found in Problem 10-19, design suitable bearings to support the load for at least 5E8 cycles at 1200 rpm. State all assumptions. (a) Using hydrodynamically lubricated bronze sleeve bearings with Oy = 40, 1/d=0.80, and a clearance ratio of 0.002 5. gear gear key FIGURE P11-4 Shaft Design for Problems 11-19 and…arrow_forward
- For the frame below calculate the bending moment at point R. Take P=40 and note that this value is used for both the loads and the lengths of the members of the frame. 2.5P- A Q B R С 45 degrees ✗ ✗ P i 19 Кур -2P- 4PRN -P- -arrow_forwardCalculate the bending moment at the point D on the beam below. Take F=79 and remember that this quantity is to be used to calculate both forces and lengths. 15F 30F A сarrow_forwardShow work on how to obtain P2 and T2. If using any table, please refer to it. If applying interpolation method, please show the work.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





