
Calculus (MindTap Course List)
8th Edition
ISBN: 9781285740621
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16.6, Problem 4E
Identify the surface with the given
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz).
Ꮖ
(a) (4 points) Show that V x F = 0.
(b) (4 points) Find a potential f for the vector field F.
(c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use
Stokes' Theorem to calculate the line integral
Jos
F.ds;
as denotes the boundary of S. Explain your answer.
(3) (16 points) Consider
z = uv,
u = x+y,
v=x-y.
(a) (4 points) Express z in the form z = fog where g: R² R² and f: R² →
R.
(b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate
steps otherwise no credit.
(c) (4 points) Let S be the surface parametrized by
T(x, y) = (x, y, ƒ (g(x, y))
(x, y) = R².
Give a parametric description of the tangent plane to S at the point p = T(x, y).
(d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic
approximation) of F = (fog) at a point (a, b). Verify that
Q(x,y) F(a+x,b+y).
=
(6) (8 points) Change the order of integration and evaluate
(z +4ry)drdy .
So S√ ²
0
Chapter 16 Solutions
Calculus (MindTap Course List)
Ch. 16.1 - 110 Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - 110 Sketch the vector field F by drawing a diagram...Ch. 16.1 - 110 Sketch the vector field F by drawing a diagram...Ch. 16.1 - 110 Sketch the vector field F by drawing a diagram...Ch. 16.1 - Prob. 7ECh. 16.1 - Prob. 8ECh. 16.1 - Prob. 9ECh. 16.1 - Prob. 10E
Ch. 16.1 - Prob. 11ECh. 16.1 - Match the vector fields F with the plots labelled...Ch. 16.1 - Match the vector fields F with the plots labelled...Ch. 16.1 - Match the vector fields F with the plots labeled...Ch. 16.1 - Match the vector fields F on 3 with the plots...Ch. 16.1 - Match the vector fields F on 3 with the plots...Ch. 16.1 - Match the vector fields F on 3 with the plots...Ch. 16.1 - Match the vector fields F on 3 with the plots...Ch. 16.1 - Prob. 19ECh. 16.1 - Prob. 20ECh. 16.1 - Prob. 21ECh. 16.1 - Find the gradient vector field of f. f(s,t)=2s+3tCh. 16.1 - Find the gradient vector field of f....Ch. 16.1 - Find the gradient vector field of f....Ch. 16.1 - Find the gradient vector field f of f and sketch...Ch. 16.1 - Find the gradient vector field f of f and sketch...Ch. 16.1 - Prob. 27ECh. 16.1 - Plot the gradient vector field of f together with...Ch. 16.1 - Match the functions f with the plots of their...Ch. 16.1 - Match the functions f with the plots of their...Ch. 16.1 - Match the functions f with the plots of their...Ch. 16.1 - Match the functions f with the plots of their...Ch. 16.1 - A particle moves in a velocity field...Ch. 16.1 - Prob. 34ECh. 16.1 - The flow lines or streamlines of a vector field...Ch. 16.1 - a Sketch the vector field F(x,y)=i+xj and then...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Prob. 4ECh. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Prob. 14ECh. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Prob. 16ECh. 16.2 - Let F be the vector fields shown in the figure. a...Ch. 16.2 - The figure shows a vector field F and two curves...Ch. 16.2 - Prob. 19ECh. 16.2 - Prob. 20ECh. 16.2 - Prob. 21ECh. 16.2 - Evaluate the line integral CFdr, where C is given...Ch. 16.2 - Prob. 23ECh. 16.2 - Prob. 24ECh. 16.2 - Prob. 25ECh. 16.2 - Prob. 26ECh. 16.2 - Use a graph of the vector field F and the curve C...Ch. 16.2 - Use a graph of the vector field F and the curve C...Ch. 16.2 - a Evaluate the line integral CFdr, where...Ch. 16.2 - a Evaluate the line integral CFdr, where...Ch. 16.2 - Find the exact value of Cx3y3zds, where C is the...Ch. 16.2 - a Find the work done by the force field...Ch. 16.2 - A thin wire is bent into the shape of a semicircle...Ch. 16.2 - A thin wire has the shape of the first-quadrant...Ch. 16.2 - a Write the formulas similar to Equations 4 for...Ch. 16.2 - Find the mass and center of mass of a wire in the...Ch. 16.2 - Prob. 37ECh. 16.2 - Prob. 38ECh. 16.2 - Find the work done by the force field...Ch. 16.2 - Find the work done by the force field...Ch. 16.2 - Prob. 41ECh. 16.2 - Prob. 42ECh. 16.2 - Prob. 43ECh. 16.2 - An object with mass m moves with position function...Ch. 16.2 - A 160-lb man carries a 25-lb can of paint up a...Ch. 16.2 - Prob. 46ECh. 16.2 - a Show that a constant force field does zero work...Ch. 16.2 - Prob. 48ECh. 16.2 - If C is a smooth curve given by a vector function...Ch. 16.2 - Prob. 50ECh. 16.2 - An object moves along the curve C shown in the...Ch. 16.2 - Experiments show that a steady current I in a long...Ch. 16.3 - The figure shows a curve C and a contour map of a...Ch. 16.3 - Prob. 2ECh. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Prob. 6ECh. 16.3 - Prob. 7ECh. 16.3 - Prob. 8ECh. 16.3 - Prob. 9ECh. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - The figure shows the vector field F(x,y)=2xy,x2...Ch. 16.3 - a Find a function f such that F=f and b use part a...Ch. 16.3 - a Find a function f such that F=f and b use part a...Ch. 16.3 - a Find a function f such that F=f and b use part a...Ch. 16.3 - a Find a function f such that F=f and b use part a...Ch. 16.3 - Prob. 16ECh. 16.3 - Prob. 17ECh. 16.3 - Prob. 18ECh. 16.3 - Show that the line integral is independent of path...Ch. 16.3 - Show that the line integral is independent of path...Ch. 16.3 - Suppose youre asked to determine the curve that...Ch. 16.3 - Prob. 22ECh. 16.3 - Find the work done by the force field F in moving...Ch. 16.3 - Find the work done by the force field F in moving...Ch. 16.3 - Is the vector field shown in the figure...Ch. 16.3 - Is the vector field shown in the figure...Ch. 16.3 - If F(x,y)=sinyi+(1+xcosy)j, use a plot to guess...Ch. 16.3 - Let F=f, where f(x,y)=sin(x2y). Find curves C1 and...Ch. 16.3 - Show that if the vector field F=Pi+Qj+Rk is...Ch. 16.3 - Use Exercise 29 to show that the line integral...Ch. 16.3 - Determine whether or not the given set is a open,...Ch. 16.3 - Determine whether or not the given set is a open,...Ch. 16.3 - Determine whether or not the given set is a open,...Ch. 16.3 - Prob. 34ECh. 16.3 - Prob. 35ECh. 16.3 - a Suppose that F is an inverse square force field,...Ch. 16.4 - Evaluate the line integral by two methods: a...Ch. 16.4 - Evaluate the line integral by two methods: a...Ch. 16.4 - Evaluate the line integral by two methods: a...Ch. 16.4 - Evaluate the line integral by two methods: a...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate cFdr. Check the...Ch. 16.4 - Prob. 12ECh. 16.4 - Prob. 13ECh. 16.4 - Prob. 14ECh. 16.4 - Verify Greens Theorem by using a computer algebra...Ch. 16.4 - Verify Greens Theorem by using a computer algebra...Ch. 16.4 - Prob. 17ECh. 16.4 - A particle starts at the origin, moves along the...Ch. 16.4 - Prob. 19ECh. 16.4 - If a circle C with radius 1 rolls along the...Ch. 16.4 - Prob. 21ECh. 16.4 - Prob. 22ECh. 16.4 - Use Exercise 22 to find the centroid of a...Ch. 16.4 - Prob. 24ECh. 16.4 - A plane lamina with constant density (x,y)=...Ch. 16.4 - Prob. 26ECh. 16.4 - Use the method of Example 5 to calculate CFdr,...Ch. 16.4 - Prob. 28ECh. 16.4 - If F is the vector field of Example 5, show that...Ch. 16.4 - Complete the proof of the special case of Greens...Ch. 16.4 - Prob. 31ECh. 16.5 - Find a the curl and b the divergence of the vector...Ch. 16.5 - Find a the curl and b the divergence of the vector...Ch. 16.5 - Find a the curl and b the divergence of the vector...Ch. 16.5 - Find a the curl and b the divergence of the vector...Ch. 16.5 - Find a the curl and b the divergence of the vector...Ch. 16.5 - Find a the curl and b the divergence of the vector...Ch. 16.5 - Find a the curl and b the divergence of the vector...Ch. 16.5 - Find a the curl and b the divergence of the vector...Ch. 16.5 - The vector field F is shown in the xy-plane and...Ch. 16.5 - The vector field F is shown in the xy-plane and...Ch. 16.5 - The vector field F is shown in the xy-plane and...Ch. 16.5 - Let f be a scalar field and F a vector field....Ch. 16.5 - Determine whether or not the vector field is...Ch. 16.5 - Determine whether or not the vector field is...Ch. 16.5 - Prob. 15ECh. 16.5 - Determine whether or not the vector field is...Ch. 16.5 - Prob. 17ECh. 16.5 - Determine whether or not the vector field is...Ch. 16.5 - Is there a vector field G on 3 such that curl...Ch. 16.5 - Prob. 20ECh. 16.5 - Show that any vector field of the form...Ch. 16.5 - Prob. 22ECh. 16.5 - Prob. 23ECh. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Prob. 25ECh. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Prob. 27ECh. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Let r=xi+yj+zk and r=|r|. Verify each identity. a...Ch. 16.5 - Let r=xi+yj+zk and r=|r|. Verify each identity. a...Ch. 16.5 - Let r=xi+yj+zk and r=|r|. If F=r/rp, find div F....Ch. 16.5 - Use Greens Theorem in the form of Equation 13 to...Ch. 16.5 - Prob. 34ECh. 16.5 - Recall from Section 14.3 that a function g is...Ch. 16.5 - Prob. 36ECh. 16.5 - This exercise demonstrates a connection between...Ch. 16.5 - Maxwells equations relating the electric field E...Ch. 16.5 - We have seen that all vector fields of the form...Ch. 16.6 - Determine whether the points P and Q lie on the...Ch. 16.6 - Determine whether the points P and Q lie on the...Ch. 16.6 - Prob. 3ECh. 16.6 - Identify the surface with the given vector...Ch. 16.6 - Prob. 5ECh. 16.6 - Identify the surface with the given vector...Ch. 16.6 - Use a computer to graph the parametric surface....Ch. 16.6 - Prob. 8ECh. 16.6 - Prob. 9ECh. 16.6 - Prob. 10ECh. 16.6 - Prob. 11ECh. 16.6 - Prob. 12ECh. 16.6 - Match the equations with the graphs labeled IVI...Ch. 16.6 - Match the equations with the graphs labeled IVI...Ch. 16.6 - Match the equations with the graphs labeled IVI...Ch. 16.6 - Match the equations with the graphs labeled IVI...Ch. 16.6 - Prob. 17ECh. 16.6 - Prob. 18ECh. 16.6 - Find da parametric representation for the surface....Ch. 16.6 - Find da parametric representation for the surface....Ch. 16.6 - Find da parametric representation for the surface....Ch. 16.6 - Find da parametric representation for the surface....Ch. 16.6 - Find da parametric representation for the surface....Ch. 16.6 - Find da parametric representation for the surface....Ch. 16.6 - Find da parametric representation for the surface....Ch. 16.6 - Find da parametric representation for the surface....Ch. 16.6 - Prob. 27ECh. 16.6 - Prob. 28ECh. 16.6 - Prob. 29ECh. 16.6 - Prob. 30ECh. 16.6 - a What happens to the spiral tube in Example 2 see...Ch. 16.6 - Prob. 32ECh. 16.6 - Find an equation of the tangent plane to the given...Ch. 16.6 - Find an equation of the tangent plane to the given...Ch. 16.6 - Prob. 35ECh. 16.6 - Prob. 36ECh. 16.6 - Prob. 37ECh. 16.6 - Prob. 38ECh. 16.6 - Prob. 39ECh. 16.6 - Prob. 40ECh. 16.6 - Find the area of the surface. The part of the...Ch. 16.6 - Find the area of the surface. The part of the cone...Ch. 16.6 - Find the area of the surface. The surface...Ch. 16.6 - Find the area of the surface. The part of the...Ch. 16.6 - Find the area of the surface. The part of the...Ch. 16.6 - Find the area of the surface. The part of the...Ch. 16.6 - Find the area of the surface. The part of the...Ch. 16.6 - Prob. 48ECh. 16.6 - Find the area of the surface. The surface with...Ch. 16.6 - Find the area of the surface. The part of the...Ch. 16.6 - Prob. 51ECh. 16.6 - Prob. 52ECh. 16.6 - Prob. 53ECh. 16.6 - Prob. 54ECh. 16.6 - Prob. 55ECh. 16.6 - Prob. 56ECh. 16.6 - Prob. 57ECh. 16.6 - Prob. 58ECh. 16.6 - a Show that the parametric equations...Ch. 16.6 - a Show that the parametric equations...Ch. 16.6 - Find the area of the part of the sphere...Ch. 16.6 - The figure shows the surface created when the...Ch. 16.6 - Prob. 63ECh. 16.6 - a Find a parametric representation for the torus...Ch. 16.7 - Let S be the surface of the box enclosed by the...Ch. 16.7 - Prob. 2ECh. 16.7 - Prob. 3ECh. 16.7 - Suppose that f(x,y,z)=g(x2+y2+z2), where g is a...Ch. 16.7 - Evaluate the surface integral. S(x+y+z)dS, S is...Ch. 16.7 - Evaluate the surface integral. SxyzdS, S is the...Ch. 16.7 - Prob. 7ECh. 16.7 - Evaluate the surface integral. S(x2+y2)dS, S is...Ch. 16.7 - Evaluate the surface integral. Sx2yzdS, S is the...Ch. 16.7 - Prob. 10ECh. 16.7 - Evaluate the surface integral. SxdS, S is the...Ch. 16.7 - Evaluate the surface integral. SydS, S is the...Ch. 16.7 - Evaluate the surface integral. Sz2dS, S is the...Ch. 16.7 - Evaluate the surface integral. Sy2z2dS, S is the...Ch. 16.7 - Prob. 15ECh. 16.7 - Evaluate the surface integral. Sy2dS, S is the...Ch. 16.7 - Prob. 17ECh. 16.7 - Evaluate the surface integral. S(x+y+z)dS, S is...Ch. 16.7 - Evaluate the surface integral. SxzdS, S is the...Ch. 16.7 - Prob. 20ECh. 16.7 - Evaluate the surface integral SFdS for the given...Ch. 16.7 - Evaluate the surface integral SFdS for the given...Ch. 16.7 - Evaluate the surface integral SFdS for the given...Ch. 16.7 - Evaluate the surface integral SFdS for the given...Ch. 16.7 - Evaluate the surface integral SFdS for the given...Ch. 16.7 - Evaluate the surface integral SFdS for the given...Ch. 16.7 - Evaluate the surface integral SFdS for the given...Ch. 16.7 - Evaluate the surface integral SFdS for the given...Ch. 16.7 - Evaluate the surface integral SFdS for the given...Ch. 16.7 - Evaluate the surface integral SFdS for the given...Ch. 16.7 - Evaluate the surface integral SFdS for the given...Ch. 16.7 - Evaluate the surface integral SFdS for the given...Ch. 16.7 - Prob. 33ECh. 16.7 - Prob. 34ECh. 16.7 - Prob. 35ECh. 16.7 - Find the flux of F(x,y,z)=sin(xyz)i+x2yj+z2ex/5k...Ch. 16.7 - Prob. 37ECh. 16.7 - Prob. 38ECh. 16.7 - Find the centre of mass of the hemisphere...Ch. 16.7 - Find the mass of a thin funnel in the shape of a...Ch. 16.7 - Prob. 41ECh. 16.7 - Let S be the part of the sphere x2+y2+z2=25 that...Ch. 16.7 - Prob. 43ECh. 16.7 - Prob. 44ECh. 16.7 - Use Gausss Law to find the charge contained in the...Ch. 16.7 - Prob. 46ECh. 16.7 - Prob. 47ECh. 16.7 - Prob. 48ECh. 16.7 - Prob. 49ECh. 16.8 - A hemisphere H and a portion P of a paraboloid are...Ch. 16.8 - Use Stokes Theorem to evaluate ScurlFdS...Ch. 16.8 - Use Stokes Theorem to evaluate ScurlFdS....Ch. 16.8 - Use Stokes Theorem to evaluate ScurlFdS....Ch. 16.8 - Use Stokes Theorem to evaluate ScurlFdS....Ch. 16.8 - Use Stokes Theorem to evaluate ScurlFdS...Ch. 16.8 - Use Stokes Theorem to evaluate cFdr. In each case...Ch. 16.8 - Prob. 8ECh. 16.8 - Use Stokes Theorem to evaluate cFdr. In each case...Ch. 16.8 - Use Stokes Theorem to evaluate cFdr. In each case...Ch. 16.8 - a Use Stokes Theorem to evaluate cFdr, where...Ch. 16.8 - a Use Stokes Theorem to evaluate cFdr, where...Ch. 16.8 - Verify the Stokes Theorem is true for the given...Ch. 16.8 - Verify that Stokes Theorem is true for given...Ch. 16.8 - Verify that Stokes Theorem is true for given...Ch. 16.8 - Let C be a simple closed smooth curve that lies in...Ch. 16.8 - A particle moves along line segments from the...Ch. 16.8 - Evaluate C(y+sinx)dx+(z2+cosy)dy+x3dz where C is...Ch. 16.8 - Prob. 19ECh. 16.8 - Suppose S and C satisfy the hypotheses of Stokes...Ch. 16.9 - Verify that the Divergence Theorem is true for the...Ch. 16.9 - Verify that the Divergence Theorem is true for the...Ch. 16.9 - Prob. 3ECh. 16.9 - Prob. 4ECh. 16.9 - Prob. 5ECh. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Prob. 7ECh. 16.9 - Prob. 8ECh. 16.9 - Prob. 9ECh. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Prob. 14ECh. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use a computer algebra system to plot the vector...Ch. 16.9 - Use a Divergence Theorem to evaluate SFdS, where...Ch. 16.9 - Let F(x,y,z)=ztan1(y2)i+z3ln(x2+1)j+zk. Find the...Ch. 16.9 - A vector field F is shown. Use the interpretation...Ch. 16.9 - a Are the points P1 and P2 sources or sinks for...Ch. 16.9 - Prob. 21ECh. 16.9 - Prob. 22ECh. 16.9 - Verify that div E=0 for the electric field...Ch. 16.9 - Prob. 24ECh. 16.9 - Prob. 25ECh. 16.9 - Prove each identity, assuming that S and E satisfy...Ch. 16.9 - Prove each identity, assuming that S and E satisfy...Ch. 16.9 - Prove each identity, assuming that S and E satisfy...Ch. 16.9 - Prove each identity, assuming that S and E satisfy...Ch. 16.9 - Prob. 30ECh. 16.9 - Suppose S and E satisfy the conditions of the...Ch. 16.9 - Prob. 32ECh. 16.R - Prob. 1CCCh. 16.R - a What is a conservative vector field? b What is...Ch. 16.R - Prob. 3CCCh. 16.R - a Define the line integral of a vector field F...Ch. 16.R - Prob. 5CCCh. 16.R - Prob. 6CCCh. 16.R - Prob. 7CCCh. 16.R - Write expressions for the area enclosed by a curve...Ch. 16.R - Prob. 9CCCh. 16.R - Prob. 10CCCh. 16.R - Prob. 11CCCh. 16.R - Prob. 12CCCh. 16.R - Prob. 13CCCh. 16.R - Prob. 14CCCh. 16.R - Prob. 15CCCh. 16.R - Prob. 16CCCh. 16.R - Prob. 1TFQCh. 16.R - Prob. 2TFQCh. 16.R - Prob. 3TFQCh. 16.R - Prob. 4TFQCh. 16.R - Prob. 5TFQCh. 16.R - Prob. 6TFQCh. 16.R - Prob. 7TFQCh. 16.R - Prob. 8TFQCh. 16.R - Prob. 9TFQCh. 16.R - Prob. 10TFQCh. 16.R - Prob. 11TFQCh. 16.R - Prob. 12TFQCh. 16.R - Prob. 13TFQCh. 16.R - A vector field F, a curve C, and a point P are...Ch. 16.R - Evaluate the line integral. cxds, C is the arc of...Ch. 16.R - Evaluate the line integral. cyzcosxds,...Ch. 16.R - Evaluate the line integral. cydx+(x+y2)dy, C is...Ch. 16.R - Prob. 5ECh. 16.R - Evaluate the line integral. cxydx+eydy+xzdz, C is...Ch. 16.R - Prob. 7ECh. 16.R - Evaluate the line integral. cFdr, where...Ch. 16.R - Prob. 9ECh. 16.R - Find the work done by the force field...Ch. 16.R - Show that F is a conservative vector field. Then...Ch. 16.R - Prob. 12ECh. 16.R - Prob. 13ECh. 16.R - Show that F is a conservative and use this fact to...Ch. 16.R - Verify that Greens Theorem is true for the line...Ch. 16.R - Prob. 16ECh. 16.R - Use Greens theorem to evaluate cx2ydxxy2dy, where...Ch. 16.R - Prob. 18ECh. 16.R - Show that there is no vector field G such that...Ch. 16.R - Prob. 20ECh. 16.R - Prob. 21ECh. 16.R - If f and g are twice differentiable functions,...Ch. 16.R - If f is a harmonic function, that is, 2f=0, show...Ch. 16.R - a Sketch the curve C with parametric equations...Ch. 16.R - Prob. 25ECh. 16.R - Prob. 26ECh. 16.R - Prob. 27ECh. 16.R - Prob. 28ECh. 16.R - Evaluate the surface integral. sFdS, where...Ch. 16.R - Prob. 30ECh. 16.R - Verify that Stokes Theorem is true for the vector...Ch. 16.R - Prob. 32ECh. 16.R - Use Stokes Theorem to evaluate cFdr, where...Ch. 16.R - Use the Divergence Theorem to calculate the...Ch. 16.R - Prob. 35ECh. 16.R - Compute the outward flux of...Ch. 16.R - Prob. 37ECh. 16.R - Let F(x,y)=(2x3+2xy22y)i+(2y3+2x2y+2x)jx2+y2...Ch. 16.R - Find sFndS, where F(x,y,z)=xi+yj+zk and S is the...Ch. 16.R - Prob. 40ECh. 16.R - Prob. 41ECh. 16.P - Let S be a smooth parametric surface and P be a...Ch. 16.P - Find the positively oriented simple closed curve C...Ch. 16.P - Let C be a simple closed piecewise-smooth space...Ch. 16.P - Investigate the shape of the surface with...Ch. 16.P - Prove the following identity:...Ch. 16.P - The depicts the sequence of events in each...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
- (8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward
- (2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forward(5) (10 points) Let D be the parallelogram in the xy-plane with vertices (0, 0), (1, 1), (1, 1), (0, -2). Let f(x,y) = xy/2. Use the linear change of variables T(u, v)=(u,u2v) = (x, y) 1 to calculate the integral f(x,y) dA= 0 ↓ The domain of T is a rectangle R. What is R? |ǝ(x, y) du dv. |ð(u, v)|arrow_forward
- 2 Anot ined sove in peaper PV+96252 Q3// Find the volume of the region between the cylinder z = y2 and the xy- plane that is bounded by the planes x=1, x=2,y=-2,andy=2. vertical rect a Q4// Draw and Evaluate Soxy-2sin (ny2)dydx D Lake tarrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. B 13 cm 97° Law of Sines Law of Cosines A 43° Then solve the triangle. (Round your answers to two decimal places.) b = x C = A = 40.00arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a 29 b 39 d Ꮎ 126° a Ꮎ b darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning

Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Basic Differentiation Rules For Derivatives; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=IvLpN1G1Ncg;License: Standard YouTube License, CC-BY