![Calculus (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781285740621/9781285740621_largeCoverImage.gif)
Concept explainers
(a)
To find:
Solution:
Explanation:
1) Concept:
If
2) Given:
3) Calculation:
If
Integrate
Notice that the constant of integration is a constant with respect to
Now differentiate above equation with respect to
Comparing (2), and (4)
Integrating with respect to
Hence (4) becomes
Differentiate with respect to
Comparing this equation with (1)
Integrate with respect to
Therefore, (6) becomes,
Conclusion:
(b)
To evaluate:
Solution:
Explanation:
1) Concept:
Fundamental theorem of line integral:
Let
2) Given:
3) Calculation:
C is a smooth curve with initial point
So, by using concept,
Since
Therefore,
Therefore,
From the answer of part (a),
Therefore,
Conclusion:
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 16 Solutions
Calculus (MindTap Course List)
- A tank initially contains 50 gal of pure water. Brine containing 3 lb of salt per gallon enters the tank at 2 gal/min, and the (perfectly mixed) solution leaves the tank at 3 gal/min. Thus, the tank is empty after exactly 50 min. (a) Find the amount of salt in the tank after t minutes. (b) What is the maximum amount of salt ever in the tank?arrow_forwardpleasd dont use chat gptarrow_forwardBy using the numbers -5;-3,-0,1;6 and 8 once, find 30arrow_forward
- Show that the Laplace equation in Cartesian coordinates: J²u J²u + = 0 მx2 Jy2 can be reduced to the following form in cylindrical polar coordinates: 湯( ди 1 8²u + Or 7,2 მ)2 = 0.arrow_forwardFind integrating factorarrow_forwardDraw the vertical and horizontal asymptotes. Then plot the intercepts (if any), and plot at least one point on each side of each vertical asymptote.arrow_forward
- Draw the asymptotes (if there are any). Then plot two points on each piece of the graph.arrow_forwardCancel Done RESET Suppose that R(x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R(x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (a) Find another zero of R(x). ☐ | | | | |│ | | | -1 བ ¢ Live Adjust Filters Croparrow_forwardSuppose that R (x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R (x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (c) What is the maximum number of nonreal zeros that R (x) can have? ☐arrow_forward
- Suppose that R (x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R (x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (b) What is the maximum number of real zeros that R (x) can have? ☐arrow_forwardi need help please dont use chat gptarrow_forward3.1 Limits 1. If lim f(x)=-6 and lim f(x)=5, then lim f(x). Explain your choice. x+3° x+3* x+3 (a) Is 5 (c) Does not exist (b) is 6 (d) is infinitearrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285463230/9781285463230_smallCoverImage.gif)