
Concept explainers
a)
The amount of heat transfer for the dissociation of water.
a)

Answer to Problem 48P
The amount of heat transfer for the dissociation of water is
Explanation of Solution
Write the expression for the stoichiometric reaction for reaction 1.
Here, the stoichiometric coefficient for
Write the expression for the stoichiometric reaction for reaction 1.
Here, the stoichiometric coefficient for
Write the expression for the actual reaction for the reported process.
Here, the equilibrium composition contains x kmol of
Write the hydrogen balance equation From Equation (III).
Write the oxygen balance equation From Equation (III).
Write the expression for the formula for total number of moles
Here, number of moles of
Write the expression for the equilibrium constant for reaction 1
Here, pressure is P.
Write the expression for the equilibrium constant for reaction 2
Write the energy balance equation to determine the heat transfer
Here, number of moles of products is
Write the expression to calculate the molar flow rate of water
Here, mass flow rate of water is
Write the expression to calculate the rate of heat transfer
Conclusion:
Refer Table A-28, “Natural logarithm of equilibrium constants”, select the value of
Refer Table A-28, “Natural logarithm of equilibrium constants”, select the value of
Substitute x for
Substitute
Substitute
Solve Equations (IV), (V), (XII), and (XIII) simultaneously and find the values of x, y, z, and w, as 0.7835, 0.1622, 0.05396, and 0.1086 respectively.
Substitute 0.7835 for x, 0.1622 for y, 0.05396 for z, and 0.1086 for w in Equation (III).
Refer the table A-26, “Enthalpy of formation table”, obtain the enthalpy of
Refer the table A-23, “Ideal gas properties of water vapor”, obtain the enthalpy of water vapor at 3000 K
Refer the table A-22, “Ideal gas properties of
Refer the table A-19, “Ideal gas properties of
Refer the table A-25, “Ideal gas properties of
Write the heat input equation
Here, number of moles of product is
Substitute
Substitute
Substitute
Thus, the amount of heat transfer for the dissociation of water is
b)
The amount of heat transfer for the absence of dissociation of water.
b)

Answer to Problem 48P
The amount of heat transfer for the absence of dissociation of water is
Explanation of Solution
Write the expression to determine the heat transfer for the absence of dissociation of Water.
Conclusion:
Substitute
Thus, the amount of heat transfer for the absence of dissociation of water is
Want to see more full solutions like this?
Chapter 16 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- Problem Statement A large plate of insulating material 8 cm thick has in it a 3 cm-diam hole, with axis normal to the surface. The temperature of the surroundings are 1800 K at one side of the plate and 400 K on the other side. Insulating plate D= 3 cm H= 8 cm Considering the sides of the hole to be black, (a) Draw a system of resistors that can be used to solve for the various heat transfer rates. For full credit you must label all "voltages", "currents," and resistances present. (b) Estimate the radiative heat transfer through the hole.arrow_forwardUsing MATLAB, plot the unit-step response curve for the following transfer function and Using MATLAB, obtain the rise time, peak time, maximum overshoot, and settling time. Auto Controls Provide codesarrow_forwardUse Routh's stability criterion to determine how many roots with positive real partsthe following equations have Auto Controls Show full solutionsarrow_forward
- Plot the unit step and unit ramp response curve for the following closed loop transferfunction using MATLAB. Indicate clearly the input and output in your plot Auto Controls provide matlab codearrow_forwardUsing a "for loop" in MATLAB program to obtain the unit-step response of thissystem for the following four cases in a single plot What can you observe from the plot? Auto Controls Provide matlab codearrow_forwardProblem 2 (40 Points) A particle of mass m is embedded at a distance a from the center of a massless circular disk of radius r. The disk rolls without slipping down a plane inclined at an angle a with the horizontal. A horizontal force of Ễ = −Fxî + Fyĵ resists motion of the disk down the plane by pushing on the disk at the axle that runs through the center of the disk. a) Find the kinetic energy T. (10 points) b) Find the potential energy V. (10 points) c) Write a position vector to the axle at the center of the wheel in terms of x and y. (10 points) d) Using virtual work, find the applied force Q₁ that would go in Lagrange's Equations. DO NOT WRITE OUT OR SOLVE LAGRANGES'S EQUATIONS. (10 points) x r m e 10 g F α HINTS 1) Consider using the STATIONARY red xy frame a reference frame from which to draw vectors 2) The red xy system DOES NOT move. It is stationary. 3) Consider that the disk rolls a distance of re down the ramparrow_forward
- Draw a counter balance circuit of a vertical cylinder. using counter balance valve and external load.arrow_forwardplease sketch a stress-strain diagram for a typical structural steel in tension and display all of the important features.arrow_forwardProblem 1 (30 Points) Consider the following 2 scenarios. In scenario 1, a mass m slides on a cylindrical surface of radius R. In scenario 2, a mass m hangs at the end of a thin massless rod of length R. In both scenarios, there is no friction either on the surface (scenario 1), or at the pivot point of the pendulum (scenario 2). Also in both scenarios, there is one generalized coordinate, . R Scenario 1 R m R g Scenario 2 m HINT: In both scenarios, it is much easier to choose your datum for potential energy as the center of the bowl (scenario 1), or the pivot point of the pendulum (scenario 2). Part I a) Determine the Lagrangian for each system. DO NOT FIND THE EQUATIONS OF MOTION (5 points) b) What can you say about the systems based on the Lagrangian? (2 points) c) Solve for the equations of motion for both systems. (8 points) Part II Now, for scenario 1, introduce an additional coordinate and treat it as a nonholonomic system to determine the normal force acting on the mass. a)…arrow_forward
- Consider 0.65 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another rigid tank holding 0.3 kg of CO2 at 300 K, 1 bar. The valve is opened and gases are allowed to mix, achieving an equilibrium state at 290 K. Determine: (a) the volume of each tank, in m³. (b) the final pressure, in bar. (c) the magnitude of the heat transfer to or from the gases during the process, in kJ. (d) the entropy change of each gas and of the overall system, in kJ/K.arrow_forward(Read Image) (Answer: ω = 1.10 rad/sec CW)arrow_forwardWhat is the configuration of the control loop if steam must be shut down in case of a problem? (I found this question on the internet and was wondering what the answer is) A.Valve is fail open, PIC is direct-acting, TIC is reverse acting, and controller algorithm is feed-forwarding.B. Valve is fail open, PIC is reverse-acting, TIC is direct acting, and controller algorithm is cascade.C. Valve is fail closed, PIC is direct-acting, TIC is reverse acting, and controller algorithm is feed-forward.D. Valve is fail closed, PIC is reverse-acting, TIC is reverse acting, and controller algorithm is cascade.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





