Concept explainers
(a)
The natural Logarithm equilibrium constant for the reaction at
Compare the results for the values of
(a)
Answer to Problem 23P
The natural Logarithm equilibrium constant for the reaction at
The natural equilibrium constant obtained from the equilibrium constants of Table A-28 at 2
Explanation of Solution
Express the standard-state Gibbs function change.
Here, the Gibbs function of components
Write the equation to calculate the natural logarithms of equilibrium constant for the chemical equilibrium of ideal-gas mixtures.
Here, universal gas constant is
Conclusion:
From the equilibrium reaction, the values of
Refer Table A-26, obtain the values of
Substitute 1 for
Substitute
Thus, the equilibrium constant obtained from the equilibrium reaction at 298 K is
From table A-28, “Natural logarithms of the equilibrium constant” obtain the equilibrium constant for the reaction at the temperature of 298 K as
The value obtained for equilibrium constant at 298 K from the definition of the equilibrium constant is
(b)
The natural logarithm equilibrium constant for the reaction at 2000 K.
Compare the results for the values of
(b)
Answer to Problem 23P
The natural logarithm equilibrium constant for the reaction at 2000 K is
The natural Logarithm equilibrium constant obtained from the equilibrium constants of Table A-28 at 2000K is
Explanation of Solution
Express the standard-state Gibbs function change.
Here, the Gibbs function of components
Write the equation to calculate the natural logarithms of equilibrium constant for the chemical equilibrium of ideal-gas mixtures.
Here, universal gas constant is
Conclusion:
From the equilibrium reaction, the values of
Refer Table A-26, obtain the values of
Refer Table A-20, obtain the value of
Refer Table A-20, obtain the value of
Refer Table A-21, obtain the value of
Refer Table A-21, obtain the value of
Refer Table A-19, obtain the value of
Refer to Table A-19, obtain the value of
Substitute 1 for
Substitute
Thus, the natural logarithm equilibrium constant obtained from the equilibrium reaction at 2000K is
Refer Table A-28, “Natural logarithms of the equilibrium constant” obtain the equilibrium constant for the reaction by interpolating for the temperature of 2000 K as
The value obtained for equilibrium constant at 2000K from the definition of the equilibrium constant is
Want to see more full solutions like this?
Chapter 16 Solutions
Thermodynamics: An Engineering Approach
- PLEASE HELP ANSWER THIS THERMODYNAMICS PRACTICE QUESTION THANK YOUarrow_forwardA) Calculate the differences in the chemical potentials of ice and super-cooled water at -5.00 C and 1.00 atm pressure B) Calculate the differences in the chemical potentials of super heated ice and water at 100 C and 1.00 atm pressure For this problem, the molar entropics for each phase of water are S (G48.0Jmol K S()700J mol and S (E)= 18S.8 J mol Karrow_forward4. A container contains 0.2 m^3 of liquid water and 2.5 m^3 of vapor in equilibrium at 50°C. Determines the quality (x) and the pressure at which the mixture is found.arrow_forward
- Develop a general equation for the standard heat of reaction as a function of temperature for one of the reactions given in the picture:arrow_forwardThe change in the molar volume accompanying fusion of solid benzene is 0.5 cm3 mol−1. Determine the change in Gibbs energy of fusion when the pressure is increased from 1 bar to 5000 bar.arrow_forwardConsider the gas-phase reaction for the synthesis of methanol from CO and O₂: CO + 2H₂ CH3OH. The value of the equilibrium constant Kp at 500 K is 6.23 x 10-³. Initially equimolar amounts of CO and H₂ are introduced into the reaction vessel. Determine the equilibrium mole fractions at 500 K and 30 bar.arrow_forward
- For the system KNO3-NaNO3-H2O, a ternary point exists at 5°C at which the twoanhydrous salts are in equilibrium with a saturated solution containing 9.04% KNO3 and41.01% NaNO. Determine analytically the maximum weight of KNO3 which can berecovered pure from a salt mixture containing 70 g of KNO3 and 30 g NaNO3 bycrystallization from an aqueous solution at 5°C. Draw the phase diagram and show your solution.arrow_forwardWhen a 13.0-g sample of NaOH(s) dissolves in 400.0mL of water in a coffee cup calorimeter, the temperature of the water changes from 22.6°C to 30.7°C. Assuming that the specific heat capacity of the solution is the same as water, calculate (a) the heat transfer from system to surroundings and (b) ΔH for the reaction.NaOH(s)→Na+(aq)+OH-(aq)arrow_forward/Metal A melts at 1400°C, Metal B melts at 600°C. Thermal arrest data is obtained from cooling curves for the alloy of AB and is shown below %A O 10 20 30 50 60 80 90 100 1st Point 600 700 860 960 1140 1220 1320 1370 1400 2nd Point 600 630 690 760 910 1000 1160 1280 0 Determine (i) plot and label the equilibrium diagram(ii) for an alloy containing 50% of A and 50% B state(a) solidification commencing temperature(b) solidification ending temperature(c) percentage of solid &liquid *arrow_forward
- Consider the dissociation of N₂04 into NO2 described by N₂04 2NO₂. Assume that we start with no moles of N₂O4 and no NO₂. (a) Derive an expression for Seq/no in terms of pressure (p) and Kp, where Seq=no - nN₂04,eq is the extent of reaction.arrow_forward8. Calculate the standard enthalpy change for the reaction: 3NO2(g) + H2O(l) →2HNO3(aq) + NO(g) given the following data: AH°/kJ mol-1 2NO(g) + O2(g) → 2NO2(g) -173 2N2(g) +502(g) + 2H2O(l) → 4HNO3(aq) -255 N2(g) + O2(g) → 2NO(g) +181arrow_forwardHenry's law constant for transferring O₂ from air into water, at room temperature, is 1.3 mmol . Given that the partial pressure of O₂ in the atmosphere is 0.21 atm, the liter - atm concentration of dissolved oxygen (mg/liter) in water in equilibrium with the atmosphere at room temperature is (Consider the molecular weight of O₂ as 32 g/mol) (a) 8.7 (b) 0.8 (c) 198.1 (d) 0.2arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY