Introduction to Algorithms
3rd Edition
ISBN: 9780262033848
Author: Thomas H. Cormen, Ronald L. Rivest, Charles E. Leiserson, Clifford Stein
Publisher: MIT Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 16.4, Problem 3E
Program Plan Intro
To show that if ( S , I ) is matriod then ( S , I’ ) is also matriod.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
· Tonsider a set S of 4 elements. Prove that we can choose any two subsets
óf S of size 3, say A and B, and construct a matroid M = (S, 1) such that A and B are
the only maximum independent sets in M.
If A and B are sets and f: A→ B, then for any subset S of A we define
f(S) = {be B: b= f(a) for some a € S}.
Similarly, for any subset T of B we define the pre-image of T as
f(T) = {ae A: f(a) e T}.
Note that f-¹(T) is well defined even if f does not have an inverse!
For each of the following state whether it is True or False. If True then give a proof. If False
then give a counterexample:
(a) f(S₁US₂) = f(S₁) u f(S₂)
(b) f(Sin S₂) = f(S₁) nf (S₂)
(c) f¹(T₁UT₂) = f¹(T₁)uf-¹(T₂) (d) f-¹(T₁T₂) = f-¹(T₁) nf-¹(T₂)
Computer Science
Suppose (S, I) is a matroid, and suppose I' = { A' | S – A' contains some maximal A∈I }. Show that I' satisfies the heredity property with respect to the set S as well.
Chapter 16. Introduction to algorithms, Cormen
Chapter 16 Solutions
Introduction to Algorithms
Ch. 16.1 - Prob. 1ECh. 16.1 - Prob. 2ECh. 16.1 - Prob. 3ECh. 16.1 - Prob. 4ECh. 16.1 - Prob. 5ECh. 16.2 - Prob. 1ECh. 16.2 - Prob. 2ECh. 16.2 - Prob. 3ECh. 16.2 - Prob. 4ECh. 16.2 - Prob. 5E
Ch. 16.2 - Prob. 6ECh. 16.2 - Prob. 7ECh. 16.3 - Prob. 1ECh. 16.3 - Prob. 2ECh. 16.3 - Prob. 3ECh. 16.3 - Prob. 4ECh. 16.3 - Prob. 5ECh. 16.3 - Prob. 6ECh. 16.3 - Prob. 7ECh. 16.3 - Prob. 8ECh. 16.3 - Prob. 9ECh. 16.4 - Prob. 1ECh. 16.4 - Prob. 2ECh. 16.4 - Prob. 3ECh. 16.4 - Prob. 4ECh. 16.4 - Prob. 5ECh. 16.5 - Prob. 1ECh. 16.5 - Prob. 2ECh. 16 - Prob. 1PCh. 16 - Prob. 2PCh. 16 - Prob. 3PCh. 16 - Prob. 4PCh. 16 - Prob. 5P
Knowledge Booster
Similar questions
- 5. (This question goes slightly beyond what was covered in the lectures, but you can solve it by combining algorithms that we have described.) A directed graph is said to be strongly connected if every vertex is reachable from every other vertex; i.e., for every pair of vertices u, v, there is a directed path from u to v and a directed path from v to u. A strong component of a graph is then a maximal subgraph that is strongly connected. That is all vertices in a strong component can reach each other, and any other vertex in the directed graph either cannot reach the strong component or cannot be reached from the component. (Note that we are considering directed graphs, so for a pair of vertices u and v there could be a path from u to v, but no path path from v back to u; in that case, u and v are not in the same strong component, even though they are connected by a path in one direction.) Given a vertex v in a directed graph D, design an algorithm for com- puting the strong connected…arrow_forwardProve that equivalences of sets are transitive, for example if X ~ Y and Y ~ Z then X ~ Z.arrow_forwardGraphs G and H are isomorphic if the nodes of G may be reordered so that it is identical to H. Let ISO = { | G and H are isomorphic graphs}. Show that ISO is in the class NP.arrow_forward
- The minimum vertex cover problem is stated as follows: Given an undirected graph G = (V, E) with N vertices and M edges. Find a minimal size subset of vertices X from V such that every edge (u, v) in E is incident on at least one vertex in X. In other words you want to find a minimal subset of vertices that together touch all the edges. For example, the set of vertices X = {a,c} constitutes a minimum vertex cover for the following graph: a---b---c---g d e Formulate the minimum vertex cover problem as a Genetic Algorithm or another form of evolutionary optimization. You may use binary representation, OR any repre- sentation that you think is more appropriate. you should specify: • A fitness function. Give 3 examples of individuals and their fitness values if you are solving the above example. • A set of mutation and/or crossover and/or repair operators. Intelligent operators that are suitable for this particular domain will earn more credit. • A termination criterion for the…arrow_forwardL. I need help with this discrete math problem (question 7). Thanks in advance!arrow_forwardLet G be a graph. We say that a set of vertices C form a vertex cover if every edge of G is incident to at least one vertex in C. We say that a set of vertices I form an independent set if no edge in G connects two vertices from I. For example, if G is the graph above, C = [b, d, e, f, g, h, j] is a vertex cover since each of the 20 edges in the graph has at least one endpoint in C, and I = = [a, c, i, k] is an independent set because none of these edges appear in the graph: ac, ai, ak, ci, ck, ik. 2a In the example above, notice that each vertex belongs to the vertex cover C or the independent set I. Do you think that this is a coincidence? 2b In the above graph, clearly explain why the maximum size of an independent set is 5. In other words, carefully explain why there does not exist an independent set with 6 or more vertices.arrow_forward
- De Morgan’s laws also apply to sets. De Morgan’s laws (A U B)’ = A’ ∩ B’ (A ∩ B)’ = A’ U B’ Prove the following using set identities, including De Morgan’s laws A – (A – B) = A ∩ Barrow_forwardFor function f from {a, b, c, d} to {1, 2, 3, 4, 5}. f(a) = 4, f(b) = 5, f(c) = 1 and f(d) = 3, The set containing the domain has the following elementsarrow_forwardI have seen answers on chegg, I want newarrow_forward
- How do I do this? We say a graph G = (V, E) has a k-coloring for some positive integer k if we can assign k different colors to vertices of G such that for every edge (v, w) ∈ E, the color of v is different to the color w. More formally, G = (V, E) has a k-coloring if there is a function f : V → {1, 2, . . . , k} such that for every (v, w) ∈ E, f(v) 6= f(w).3-Color problem is defined as follows: Given a graph G = (V, E), does it have a 3-coloring?4-Color problem is defined as follows: Given a graph G = (V, E), does it have a 4-coloring?Prove that 3-Color ≤P 4-Color.(hint: add vertex to 3-Color problem instance.)arrow_forwardRecall the Clique problem: given a graph G and a value k, check whether G has a set S of k vertices that's a clique. A clique is a subset of vertices S such that for all u, v € S, uv is an edge of G. The goal of this problem is to establish the NP-hardness of Clique by reducing VertexCover, which is itself an NP-hard problem, to Clique. Recall that a vertex cover is a set of vertices S such that every edge uv has at least one endpoint (u or v) in S, and the VertexCover problem is given a graph H and a value 1, check whether H has a vertex cover of size at most 1. Note that all these problems are already phrased as decision problems, and you only need to show the NP-Hardness of Clique. In other words, we will only solve the reduction part in this problem, and you DO NOT need to show that Clique is in NP. Q4.1 Let S be a subset of vertices in G, and let C be the complement graph of G (where uv is an edge in C if and only if uv is not an edge in G). Prove that for any subset of vertices…arrow_forwardAccording to the problem in the picture, how do I Prove that 3-Color ≤p 4-Color?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education