
Basic Technical Mathematics
11th Edition
ISBN: 9780134437705
Author: Washington
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 16.3, Problem 18E
To determine
Find the inverse of the given matrix using Gauss–Jordan method.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I need the last answer t=?
I did got the answer for the first two this is just homework.
Saved
Tempo Company's fixed budget (based on sales of 18,000 units) folllows
Fixed Budget
Sales (18,000 units x $201 per unit)
3,618,000
Costs
Direct materials
Direct labor
Indirect materials
Supervisor salary
432,000
792,000
486,000
232,000
Sales commissions
126,000
Shipping
270,000
Administrative salaries
232,000
Depreciation-office equipment
252,000
Insurance
222,000
Office rent
232,000
Income
292,000
1. Compute total variable cost per unit.
2. Compute total fixed costs
3. Prepare a flexible budget at activity levels of 16,000 units and 20,000 units.
Complete this question by entering your answers in the tabs below.
Q Search
hp
PRES
0
O
y=x-9
y= 2x+4
Chapter 16 Solutions
Basic Technical Mathematics
Ch. 16.1 - For matrices A and B, find A + B.
Ch. 16.1 - Prob. 2PECh. 16.1 - Prob. 3PECh. 16.1 - Prob. 1ECh. 16.1 - Prob. 2ECh. 16.1 - Prob. 3ECh. 16.1 - Prob. 4ECh. 16.1 - In Exercises 3–10, determine the value of the...Ch. 16.1 - Prob. 6ECh. 16.1 - Prob. 7E
Ch. 16.1 - Prob. 8ECh. 16.1 - In Exercises 3–10, determine the value of the...Ch. 16.1 - Prob. 10ECh. 16.1 - Prob. 11ECh. 16.1 - Prob. 12ECh. 16.1 - Prob. 13ECh. 16.1 - Prob. 14ECh. 16.1 - Prob. 15ECh. 16.1 - Prob. 16ECh. 16.1 - Prob. 17ECh. 16.1 - Prob. 18ECh. 16.1 - Prob. 19ECh. 16.1 - Prob. 20ECh. 16.1 - Prob. 21ECh. 16.1 - Prob. 22ECh. 16.1 - Prob. 23ECh. 16.1 - Prob. 24ECh. 16.1 - Prob. 25ECh. 16.1 - Prob. 26ECh. 16.1 - Prob. 27ECh. 16.1 - Prob. 28ECh. 16.1 - Prob. 29ECh. 16.1 - Prob. 30ECh. 16.1 - Prob. 31ECh. 16.1 - Prob. 32ECh. 16.1 - Prob. 33ECh. 16.1 - Prob. 34ECh. 16.1 - Prob. 35ECh. 16.1 - Prob. 36ECh. 16.1 - Prob. 37ECh. 16.1 - Prob. 38ECh. 16.1 - Prob. 39ECh. 16.1 - Prob. 40ECh. 16.1 - Prob. 41ECh. 16.1 - Prob. 42ECh. 16.1 - Prob. 43ECh. 16.1 - Prob. 44ECh. 16.2 - Prob. 1PECh. 16.2 - Prob. 2PECh. 16.2 - Prob. 3PECh. 16.2 - Prob. 1ECh. 16.2 - Prob. 2ECh. 16.2 - Prob. 3ECh. 16.2 - Prob. 4ECh. 16.2 - Prob. 5ECh. 16.2 - Prob. 6ECh. 16.2 - Prob. 7ECh. 16.2 - Prob. 8ECh. 16.2 - Prob. 9ECh. 16.2 - Prob. 10ECh. 16.2 - Prob. 11ECh. 16.2 - Prob. 12ECh. 16.2 - Prob. 13ECh. 16.2 - Prob. 14ECh. 16.2 - Prob. 15ECh. 16.2 - Prob. 16ECh. 16.2 - Prob. 17ECh. 16.2 - Prob. 18ECh. 16.2 - Prob. 19ECh. 16.2 - Prob. 20ECh. 16.2 - Prob. 21ECh. 16.2 - Prob. 22ECh. 16.2 - Prob. 23ECh. 16.2 - Prob. 24ECh. 16.2 - Prob. 25ECh. 16.2 - Prob. 26ECh. 16.2 - Prob. 27ECh. 16.2 - Prob. 28ECh. 16.2 - Prob. 29ECh. 16.2 - Prob. 30ECh. 16.2 - Prob. 31ECh. 16.2 - Prob. 32ECh. 16.2 - Prob. 33ECh. 16.2 - Prob. 34ECh. 16.2 - Prob. 35ECh. 16.2 - Prob. 36ECh. 16.2 - Prob. 37ECh. 16.2 - Prob. 38ECh. 16.2 - Prob. 39ECh. 16.2 - Prob. 40ECh. 16.2 - Prob. 41ECh. 16.2 - Prob. 42ECh. 16.2 - Prob. 43ECh. 16.2 - Prob. 44ECh. 16.2 - Prob. 45ECh. 16.2 - Prob. 46ECh. 16.2 - Prob. 47ECh. 16.2 - Prob. 48ECh. 16.3 - Prob. 1PECh. 16.3 - Prob. 2PECh. 16.3 - Prob. 1ECh. 16.3 - Prob. 2ECh. 16.3 - Prob. 3ECh. 16.3 - Prob. 4ECh. 16.3 - Prob. 5ECh. 16.3 - Prob. 6ECh. 16.3 - Prob. 7ECh. 16.3 - Prob. 8ECh. 16.3 - Prob. 9ECh. 16.3 - Prob. 10ECh. 16.3 - Prob. 11ECh. 16.3 - Prob. 12ECh. 16.3 - Prob. 13ECh. 16.3 - Prob. 14ECh. 16.3 - Prob. 15ECh. 16.3 - Prob. 16ECh. 16.3 - Prob. 17ECh. 16.3 - Prob. 18ECh. 16.3 - Prob. 19ECh. 16.3 - In Exercises 11–20, find the inverse of each of...Ch. 16.3 - In Exercises 21–28, find the inverse of each of...Ch. 16.3 - In Exercises 21–28, find the inverse of each of...Ch. 16.3 - Prob. 23ECh. 16.3 - Prob. 24ECh. 16.3 - Prob. 25ECh. 16.3 - Prob. 26ECh. 16.3 - Prob. 27ECh. 16.3 - Prob. 28ECh. 16.3 - Prob. 29ECh. 16.3 - Prob. 30ECh. 16.3 - Prob. 31ECh. 16.3 - Prob. 32ECh. 16.3 - Prob. 33ECh. 16.3 - Prob. 34ECh. 16.3 - Prob. 35ECh. 16.3 - Prob. 36ECh. 16.3 - Prob. 37ECh. 16.3 - Prob. 38ECh. 16.3 - Prob. 39ECh. 16.3 - Prob. 40ECh. 16.3 - Prob. 41ECh. 16.3 - In Exercises 35–44, solve the given problems.
42....Ch. 16.3 - Prob. 43ECh. 16.3 - Prob. 44ECh. 16.4 - Prob. 1PECh. 16.4 - Prob. 1ECh. 16.4 - Prob. 2ECh. 16.4 - Prob. 3ECh. 16.4 - Prob. 4ECh. 16.4 - Prob. 5ECh. 16.4 - Prob. 6ECh. 16.4 - Prob. 7ECh. 16.4 - Prob. 8ECh. 16.4 - Prob. 9ECh. 16.4 - Prob. 10ECh. 16.4 - Prob. 11ECh. 16.4 - Prob. 12ECh. 16.4 - Prob. 13ECh. 16.4 - Prob. 14ECh. 16.4 - Prob. 15ECh. 16.4 - Prob. 16ECh. 16.4 - Prob. 17ECh. 16.4 - Prob. 18ECh. 16.4 - Prob. 19ECh. 16.4 - Prob. 20ECh. 16.4 - Prob. 21ECh. 16.4 - Prob. 22ECh. 16.4 - Prob. 23ECh. 16.4 - Prob. 24ECh. 16.4 - Prob. 25ECh. 16.4 - Prob. 26ECh. 16.4 - Prob. 27ECh. 16.4 - Prob. 28ECh. 16.4 - Prob. 29ECh. 16.4 - Prob. 30ECh. 16.4 - In Exercises 29–40, solve the indicated systems of...Ch. 16.4 - Prob. 32ECh. 16.4 - Prob. 33ECh. 16.4 - Prob. 34ECh. 16.4 - Prob. 35ECh. 16.4 - Prob. 36ECh. 16.4 - Prob. 37ECh. 16.4 - Prob. 38ECh. 16.4 - Prob. 39ECh. 16.4 - Prob. 40ECh. 16.5 - Prob. 1PECh. 16.5 - Prob. 1ECh. 16.5 - Prob. 2ECh. 16.5 - Prob. 3ECh. 16.5 - Prob. 4ECh. 16.5 - Prob. 5ECh. 16.5 - Prob. 6ECh. 16.5 - Prob. 7ECh. 16.5 - Prob. 8ECh. 16.5 - Prob. 9ECh. 16.5 - Prob. 10ECh. 16.5 - Prob. 11ECh. 16.5 - Prob. 12ECh. 16.5 - Prob. 13ECh. 16.5 - Prob. 14ECh. 16.5 - Prob. 15ECh. 16.5 - Prob. 16ECh. 16.5 - Prob. 17ECh. 16.5 - Prob. 18ECh. 16.5 - Prob. 19ECh. 16.5 - Prob. 20ECh. 16.5 - Prob. 21ECh. 16.5 - Prob. 22ECh. 16.5 - Prob. 23ECh. 16.5 - Prob. 24ECh. 16.5 - Prob. 25ECh. 16.5 - Prob. 26ECh. 16.5 - Prob. 27ECh. 16.5 - Prob. 28ECh. 16.5 - Prob. 29ECh. 16.5 - Prob. 30ECh. 16.5 - Prob. 31ECh. 16.5 - Prob. 32ECh. 16.5 - Prob. 33ECh. 16.5 - Prob. 34ECh. 16.6 - Prob. 1PECh. 16.6 - Prob. 1ECh. 16.6 - Prob. 2ECh. 16.6 - Prob. 3ECh. 16.6 - In Exercises 3–6, evaluate each determinant by...Ch. 16.6 - Prob. 5ECh. 16.6 - In Exercises 3–6, evaluate each determinant by...Ch. 16.6 - Prob. 7ECh. 16.6 - Prob. 8ECh. 16.6 - Prob. 9ECh. 16.6 - Prob. 10ECh. 16.6 - Prob. 11ECh. 16.6 - Prob. 12ECh. 16.6 - Prob. 13ECh. 16.6 - Prob. 14ECh. 16.6 - Prob. 15ECh. 16.6 - Prob. 16ECh. 16.6 - Prob. 17ECh. 16.6 - Prob. 18ECh. 16.6 - Prob. 19ECh. 16.6 - Prob. 20ECh. 16.6 - Prob. 21ECh. 16.6 - Prob. 22ECh. 16.6 - Prob. 23ECh. 16.6 - Prob. 24ECh. 16.6 - Prob. 25ECh. 16.6 - Prob. 26ECh. 16.6 - Prob. 27ECh. 16.6 - Prob. 28ECh. 16.6 - Prob. 29ECh. 16.6 - Prob. 30ECh. 16.6 - Prob. 31ECh. 16.6 - Prob. 32ECh. 16.6 - Prob. 33ECh. 16.6 - Prob. 34ECh. 16.6 - Prob. 35ECh. 16.6 - Prob. 36ECh. 16.6 - Prob. 37ECh. 16.6 - Prob. 38ECh. 16 - Prob. 1RECh. 16 - Prob. 2RECh. 16 - Prob. 3RECh. 16 - Prob. 4RECh. 16 - Prob. 5RECh. 16 - Prob. 6RECh. 16 - Prob. 7RECh. 16 - Prob. 8RECh. 16 - Prob. 9RECh. 16 - Prob. 10RECh. 16 - Prob. 11RECh. 16 - Prob. 12RECh. 16 - Prob. 13RECh. 16 - Prob. 14RECh. 16 - Prob. 15RECh. 16 - Prob. 16RECh. 16 - Prob. 17RECh. 16 - Prob. 18RECh. 16 - Prob. 19RECh. 16 - Prob. 20RECh. 16 - Prob. 21RECh. 16 - Prob. 22RECh. 16 - Prob. 23RECh. 16 - Prob. 24RECh. 16 - Prob. 25RECh. 16 - Prob. 26RECh. 16 - Prob. 27RECh. 16 - Prob. 28RECh. 16 - Prob. 29RECh. 16 - Prob. 30RECh. 16 - Prob. 31RECh. 16 - Prob. 32RECh. 16 - Prob. 33RECh. 16 - Prob. 34RECh. 16 - Prob. 35RECh. 16 - Prob. 36RECh. 16 - Prob. 37RECh. 16 - Prob. 38RECh. 16 - Prob. 39RECh. 16 - Prob. 40RECh. 16 - Prob. 41RECh. 16 - Prob. 42RECh. 16 - Prob. 43RECh. 16 - Prob. 44RECh. 16 - Prob. 45RECh. 16 - Prob. 46RECh. 16 - Prob. 47RECh. 16 - Prob. 48RECh. 16 - Prob. 49RECh. 16 - Prob. 50RECh. 16 - Prob. 51RECh. 16 - Prob. 52RECh. 16 - Prob. 53RECh. 16 - Prob. 54RECh. 16 - Prob. 55RECh. 16 - Prob. 56RECh. 16 - Prob. 57RECh. 16 - Prob. 58RECh. 16 - Prob. 59RECh. 16 - Prob. 60RECh. 16 - Prob. 61RECh. 16 - Prob. 62RECh. 16 - Prob. 63RECh. 16 - Prob. 64RECh. 16 - Prob. 65RECh. 16 - Prob. 66RECh. 16 - Prob. 67RECh. 16 - In Exercises 67–70, use the determinants for...Ch. 16 - Prob. 69RECh. 16 - Prob. 70RECh. 16 - Prob. 71RECh. 16 - Prob. 72RECh. 16 - Prob. 73RECh. 16 - Prob. 74RECh. 16 - Prob. 75RECh. 16 - In Exercises 73–76, solve the given...Ch. 16 - Prob. 77RECh. 16 - Prob. 78RECh. 16 - Prob. 79RECh. 16 - Prob. 80RECh. 16 - Prob. 81RECh. 16 - Prob. 82RECh. 16 - Prob. 83RECh. 16 - Prob. 84RECh. 16 - Prob. 85RECh. 16 - Prob. 86RECh. 16 - Prob. 87RECh. 16 - Prob. 88RECh. 16 - Prob. 89RECh. 16 - Prob. 90RECh. 16 - Prob. 91RECh. 16 - Prob. 92RECh. 16 - Prob. 93RECh. 16 - Prob. 94RECh. 16 - Prob. 95RECh. 16 - Prob. 96RECh. 16 - Prob. 97RECh. 16 - Prob. 1PTCh. 16 - Prob. 2PTCh. 16 - Prob. 3PTCh. 16 - Prob. 4PTCh. 16 - Prob. 5PTCh. 16 - Prob. 6PTCh. 16 - Prob. 7PTCh. 16 - Prob. 8PTCh. 16 - Prob. 9PTCh. 16 - Prob. 10PT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 7) 8) Let R be the region bounded by the given curves as shown in the figure. If the line x = k divides R into two regions of equal area, find the value of k 7. y = 3√x, y = √x and x = 4 8. y = -2, y = 3, x = −3, and x = −1 -1 2 +1 R Rarrow_forwardL sin 2x (1+ cos 3x) dx 59arrow_forwardConvert 101101₂ to base 10arrow_forward
- Definition: A topology on a set X is a collection T of subsets of X having the following properties. (1) Both the empty set and X itself are elements of T. (2) The union of an arbitrary collection of elements of T is an element of T. (3) The intersection of a finite number of elements of T is an element of T. A set X with a specified topology T is called a topological space. The subsets of X that are members of are called the open sets of the topological space.arrow_forward2) Prove that for all integers n > 1. dn 1 (2n)! 1 = dxn 1 - Ꮖ 4 n! (1-x)+/arrow_forwardDefinition: A topology on a set X is a collection T of subsets of X having the following properties. (1) Both the empty set and X itself are elements of T. (2) The union of an arbitrary collection of elements of T is an element of T. (3) The intersection of a finite number of elements of T is an element of T. A set X with a specified topology T is called a topological space. The subsets of X that are members of are called the open sets of the topological space.arrow_forward
- Definition: A topology on a set X is a collection T of subsets of X having the following properties. (1) Both the empty set and X itself are elements of T. (2) The union of an arbitrary collection of elements of T is an element of T. (3) The intersection of a finite number of elements of T is an element of T. A set X with a specified topology T is called a topological space. The subsets of X that are members of are called the open sets of the topological space.arrow_forward3) Let a1, a2, and a3 be arbitrary real numbers, and define an = 3an 13an-2 + An−3 for all integers n ≥ 4. Prove that an = 1 - - - - - 1 - - (n − 1)(n − 2)a3 − (n − 1)(n − 3)a2 + = (n − 2)(n − 3)aı for all integers n > 1.arrow_forwardDefinition: A topology on a set X is a collection T of subsets of X having the following properties. (1) Both the empty set and X itself are elements of T. (2) The union of an arbitrary collection of elements of T is an element of T. (3) The intersection of a finite number of elements of T is an element of T. A set X with a specified topology T is called a topological space. The subsets of X that are members of are called the open sets of the topological space.arrow_forward
- Definition: A topology on a set X is a collection T of subsets of X having the following properties. (1) Both the empty set and X itself are elements of T. (2) The union of an arbitrary collection of elements of T is an element of T. (3) The intersection of a finite number of elements of T is an element of T. A set X with a specified topology T is called a topological space. The subsets of X that are members of are called the open sets of the topological space.arrow_forwardDefinition: A topology on a set X is a collection T of subsets of X having the following properties. (1) Both the empty set and X itself are elements of T. (2) The union of an arbitrary collection of elements of T is an element of T. (3) The intersection of a finite number of elements of T is an element of T. A set X with a specified topology T is called a topological space. The subsets of X that are members of are called the open sets of the topological space.arrow_forward1) If f(x) = g¹ (g(x) + a) for some real number a and invertible function g, show that f(x) = (fo fo... 0 f)(x) = g¯¹ (g(x) +na) n times for all integers n ≥ 1.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Inverse Matrices and Their Properties; Author: Professor Dave Explains;https://www.youtube.com/watch?v=kWorj5BBy9k;License: Standard YouTube License, CC-BY