Multivariable Calculus
8th Edition
ISBN: 9781305266643
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16.1, Problem 30E
Match the functions f with the plots of their gradient
30. f(x, y) = x(x + y)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Describe the two main geometric properties of the gradient V f.
9. Determine an expression for the gradient of f =-Y
x+y
will use to
Consider the linearizable functions as follows. Find new transformed variables (x, y,
B or B as you need) to linearize the functions below.
21
y=
Biz1+ Bo.
Chapter 16 Solutions
Multivariable Calculus
Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...Ch. 16.1 - Sketch the vector field F by drawing a diagram...
Ch. 16.1 - Match the vector fields F with the plots labeled...Ch. 16.1 - Match the vector fields F with the plots labeled...Ch. 16.1 - Match the vector fields F with the plots labeled...Ch. 16.1 - Match the vector fields F with the plots labeled...Ch. 16.1 - Match the vector fields F on 3 with the plots...Ch. 16.1 - Match the vector fields F on 3 with the plots...Ch. 16.1 - Match the vector fields F on 3 with the plots...Ch. 16.1 - Match the vector fields F on 3 with the plots...Ch. 16.1 - Prob. 21ECh. 16.1 - Prob. 22ECh. 16.1 - Find the gradient vector field of f. 23. f(x, y,...Ch. 16.1 - Find the gradient vector field of f. 24. f(x, y,...Ch. 16.1 - Find the gradient vector field f of f and sketch...Ch. 16.1 - Find the gradient vector field f of f and sketch...Ch. 16.1 - Match the functions f with the plots of their...Ch. 16.1 - Match the functions f with the plots of their...Ch. 16.1 - Match the functions f with the plots of their...Ch. 16.1 - Match the functions f with the plots of their...Ch. 16.1 - A particle moves in a velocity field V(x, y) = x2,...Ch. 16.1 - At time t = 1, a particle is located at position...Ch. 16.1 - The flow lines (or streamlines) of a vector field...Ch. 16.1 - (a) Sketch the vector field F(x, y) = i + x j and...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Evaluate the line integral, where C is the given...Ch. 16.2 - Prob. 16ECh. 16.2 - Let F be the vector field shown in the figure. (a)...Ch. 16.2 - The figure shows a vector field F and two curves...Ch. 16.2 - Prob. 19ECh. 16.2 - Prob. 20ECh. 16.2 - Evaluate the line integral C F dr, where C is...Ch. 16.2 - Evaluate the line integral C F dr, where C is...Ch. 16.2 - Use a calculator to evaluate the line integral...Ch. 16.2 - Use a calculator to evaluate the line integral...Ch. 16.2 - Use a calculator to evaluate the line integral...Ch. 16.2 - Prob. 26ECh. 16.2 - Prob. 31ECh. 16.2 - (a) Find the work done by the force field F(x, y)...Ch. 16.2 - A thin wire is bent into the shape of a semicircle...Ch. 16.2 - A thin wire has the shape of the first-quadrant...Ch. 16.2 - Prob. 35ECh. 16.2 - Prob. 36ECh. 16.2 - If a wire with linear density (x, y) lies along a...Ch. 16.2 - If a wire with linear density (x, y, z) lies along...Ch. 16.2 - Find the work done by the force field F(x, y) = x...Ch. 16.2 - Find the work done by the force field F(x, y) = x2...Ch. 16.2 - Find the work done by the force field F(x, y, z) =...Ch. 16.2 - The force exerted by an electric charge at the...Ch. 16.2 - Prob. 43ECh. 16.2 - Prob. 44ECh. 16.2 - A 160-lb man carries a 25-lb can of paint up a...Ch. 16.2 - Suppose there is a hole in the can of paint in...Ch. 16.2 - (a) Show that a constant force field does zero...Ch. 16.2 - The base of a circular fence with radius 10 m is...Ch. 16.2 - Prob. 49ECh. 16.2 - Prob. 50ECh. 16.2 - An object moves along the curve C shown in the...Ch. 16.2 - Experiments show that a steady current I in a long...Ch. 16.3 - The figure shows a curve C and a contour map of a...Ch. 16.3 - A table of values of a function f with continuous...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Determine whether or not F is a conservative...Ch. 16.3 - Prob. 10ECh. 16.3 - The figure shows the vector field F(x, y) = 2xy,...Ch. 16.3 - Prob. 12ECh. 16.3 - (a) Find a function f such that F = f and (b) use...Ch. 16.3 - (a) Find a function f such that F = f and (b) use...Ch. 16.3 - (a) Find a function f such that F = f and (b) use...Ch. 16.3 - Prob. 16ECh. 16.3 - Prob. 17ECh. 16.3 - (a) Find a function f such that F = f and (b) use...Ch. 16.3 - Show that the line integral is independent of path...Ch. 16.3 - Show that the line integral is independent of path...Ch. 16.3 - Prob. 21ECh. 16.3 - Prob. 22ECh. 16.3 - Find the work done by the force field F in moving...Ch. 16.3 - Find the work done by the force field F in moving...Ch. 16.3 - Is the vector field shown in the figure...Ch. 16.3 - Is the vector field shown in the figure...Ch. 16.3 - Let F = f, where f(x, y) = sin(x 2y). Find...Ch. 16.3 - Prob. 29ECh. 16.3 - Use Exercise 29 to show that the line integral C y...Ch. 16.3 - Prob. 31ECh. 16.3 - Prob. 32ECh. 16.3 - Prob. 33ECh. 16.3 - Prob. 34ECh. 16.3 - Let F(x, y) = yi+xjx2+y2 (a) Show that P/y=Q/x....Ch. 16.4 - Evaluate the line integral by two methods: (a)...Ch. 16.4 - Evaluate the line integral by two methods: (a)...Ch. 16.4 - Evaluate the line integral by two methods: (a)...Ch. 16.4 - Evaluate the line integral by two methods: (a)...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate the line integral...Ch. 16.4 - Use Greens Theorem to evaluate C F dr. (Check the...Ch. 16.4 - Use Greens Theorem to evaluate C F dr. (Check the...Ch. 16.4 - Use Greens Theorem to evaluate C F dr. (Check the...Ch. 16.4 - Use Greens Theorem to evaluate C F dr. (Check the...Ch. 16.4 - Prob. 17ECh. 16.4 - A particle starts at the origin, moves along the...Ch. 16.4 - Use one of the formulas in (5) to find the area...Ch. 16.4 - If a circle C with radius 1 rolls along the...Ch. 16.4 - (a) If C is the line segment connecting the point...Ch. 16.4 - Let D be a region bounded by a simple closed path...Ch. 16.4 - Use Exercise 22 to find the centroid of a...Ch. 16.4 - Use Exercise 22 to find the centroid of the...Ch. 16.4 - A plane lamina with constant density (x, y) = ...Ch. 16.4 - Prob. 26ECh. 16.4 - Use the method of Example 5 to calculate C F dr,...Ch. 16.4 - Calculate C F dr, where F(x, y) = x2 + y, 3x y2...Ch. 16.4 - If F is the vector field of Example 5, show that C...Ch. 16.4 - Complete the proof of the special case of Greens...Ch. 16.4 - Use Greens Theorem to prove the change of...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - Find (a) the curl and (b) the divergence of the...Ch. 16.5 - The vector field F is shown in the xy-plane and...Ch. 16.5 - The vector field F is shown in the xy-plane and...Ch. 16.5 - The vector field F is shown in the xy-plane and...Ch. 16.5 - Let f be a scalar field and F a vector field....Ch. 16.5 - Prob. 13ECh. 16.5 - Determine whether or not the vector field is...Ch. 16.5 - Determine whether or not the vector field is...Ch. 16.5 - Determine whether or not the vector field is...Ch. 16.5 - Determine whether or not the vector field is...Ch. 16.5 - Determine whether or not the vector field is...Ch. 16.5 - Is there a vector field G on 3 such that curl G =...Ch. 16.5 - Is there a vector field G on 3 such that curl G =...Ch. 16.5 - Show that any vector field of the form F(x, y, z)...Ch. 16.5 - Show that any vector field of the form F(x, y, z)...Ch. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Prove the identity, assuming that the appropriate...Ch. 16.5 - Let r = x i + y j + z k and r = |r|. 30. Verify...Ch. 16.5 - Let r = x i + y j + z k and r = |r|. 31. Verify...Ch. 16.5 - Let r = x i + y j + z k and r = |r|. 32. If F =...Ch. 16.5 - Use Greens Theorem in the form of Equation 13 to...Ch. 16.5 - Prob. 34ECh. 16.5 - Prob. 35ECh. 16.5 - Prob. 36ECh. 16.5 - This exercise demonstrates a connection between...Ch. 16.5 - Maxwells equations relating the electric field E...Ch. 16.5 - We have seen that all vector fields of the form F...Ch. 16.6 - Determine whether the points P and Q lie on the...Ch. 16.6 - Determine whether the points P and Q lie on the...Ch. 16.6 - Identify the surface with the given vector...Ch. 16.6 - Prob. 4ECh. 16.6 - Prob. 5ECh. 16.6 - Prob. 6ECh. 16.6 - Match the equations with the graphs labeled IVI...Ch. 16.6 - Match the equations with the graphs labeled IVI...Ch. 16.6 - Match the equations with the graphs labeled IVI...Ch. 16.6 - Match the equations with the graphs labeled IVI...Ch. 16.6 - Prob. 17ECh. 16.6 - Match the equations with the graphs labeled IVI...Ch. 16.6 - Find a parametric representation for the surface....Ch. 16.6 - Prob. 20ECh. 16.6 - Find a parametric representation for the surface....Ch. 16.6 - Find a parametric representation for the surface....Ch. 16.6 - Find a parametric representation for the surface....Ch. 16.6 - Find a parametric representation for the surface....Ch. 16.6 - Prob. 25ECh. 16.6 - Find a parametric representation for the surface....Ch. 16.6 - Prob. 29ECh. 16.6 - Find parametric equations for the surface obtained...Ch. 16.6 - Prob. 33ECh. 16.6 - Prob. 34ECh. 16.6 - Find an equation of the tangent plane to the given...Ch. 16.6 - Prob. 36ECh. 16.6 - Find an equation of the tangent plane to the given...Ch. 16.6 - Prob. 38ECh. 16.6 - Prob. 39ECh. 16.6 - Prob. 40ECh. 16.6 - Prob. 41ECh. 16.6 - Find the area of the surface. 42. The part of the...Ch. 16.6 - Prob. 43ECh. 16.6 - Prob. 44ECh. 16.6 - Find the area of the surface. 45. The part of the...Ch. 16.6 - Find the area of the surface. 46. The part of the...Ch. 16.6 - Find the area of the surface. 47. The part of the...Ch. 16.6 - Find the area of the surface. 48.The helicoid (or...Ch. 16.6 - Find the area of the surface. 49. The surface with...Ch. 16.6 - Prob. 50ECh. 16.6 - Prob. 51ECh. 16.6 - Find the area of the surface correct to four...Ch. 16.6 - Find the area of the surface correct to four...Ch. 16.6 - Prob. 54ECh. 16.6 - Prob. 56ECh. 16.6 - Prob. 59ECh. 16.6 - Prob. 60ECh. 16.6 - Prob. 61ECh. 16.6 - The figure shows the surface created when the...Ch. 16.6 - Prob. 63ECh. 16.7 - LetSbe the surface of the box enclosed by the...Ch. 16.7 - Prob. 2ECh. 16.7 - Prob. 3ECh. 16.7 - Prob. 4ECh. 16.7 - Evaluate the surface integral. 5. s (x + y + z)...Ch. 16.7 - Evaluate the surface integral. 6. s xyz dS, Sis...Ch. 16.7 - Evaluate the surface integral. 7. s y dS,Sis the...Ch. 16.7 - Evaluate the surface integral. 8.s (x2+ y2)dS, Sis...Ch. 16.7 - Evaluate the surface integral. 9. s x2yz dS, Sis...Ch. 16.7 - Evaluate the surface integral. 10. s xz dS, S is...Ch. 16.7 - Evaluate the surface integral. 11. s x dS, S is...Ch. 16.7 - Evaluate the surface integral. 12. s y dS, S is...Ch. 16.7 - Evaluate the surface integral. 13. s z2dS, S is...Ch. 16.7 - Evaluate the surface integral. 14. s y2z2 dS, S is...Ch. 16.7 - Evaluate the surface integral. 15. s x dS, S is...Ch. 16.7 - Evaluate the surface integral. 16 s y2 dS, S is...Ch. 16.7 - Evaluate the surface integral. 17. s (x2z +...Ch. 16.7 - Evaluate the surface integral. 18. s (x + y + z)...Ch. 16.7 - Evaluate the surface integral. 19. s xz dS, S is...Ch. 16.7 - Evaluate the surface integral. 20. s (x2 + y2 +...Ch. 16.7 - Evaluate the surface integral s F dS for the...Ch. 16.7 - Evaluate the surface integral s F dS for the...Ch. 16.7 - Evaluate the surface integral s F dS for the...Ch. 16.7 - Evaluate the surface integral s F dS for the...Ch. 16.7 - Evaluate the surface integral s F dS for the...Ch. 16.7 - Evaluate the surface integral s F dS for the...Ch. 16.7 - Evaluate the surface integral s F dS for the...Ch. 16.7 - Find a formula for s F dS similar to Formula 10...Ch. 16.7 - Find a formula for s F dS similar to Formula 10...Ch. 16.7 - Find the center of mass of the hemisphere x2 + y2...Ch. 16.7 - Find the mass of a thin funnel in the shape of a...Ch. 16.7 - (a) Give an integral expression for the moment of...Ch. 16.7 - Let S be the part of the sphere x2 + y2 + z2 = 25...Ch. 16.7 - Prob. 43ECh. 16.7 - Prob. 44ECh. 16.7 - Prob. 45ECh. 16.7 - Prob. 46ECh. 16.7 - The temperature at the point (x, y, z) in a...Ch. 16.7 - Prob. 48ECh. 16.7 - Prob. 49ECh. 16.8 - 1. A hemisphere H and a portion P of a paraboloid...Ch. 16.8 - Use Stokes Theorem to evaluate s curl F dS. 2....Ch. 16.8 - Use Stokes Theorem to evaluate s curl F dS. 3....Ch. 16.8 - Prob. 4ECh. 16.8 - (x, y, z) = xyz i + xy j + x2yz k. S consists of...Ch. 16.8 - Use Stokes Theorem to evaluate s curl F dS. 6....Ch. 16.8 - Use Stokes Theorem to evaluate c F dr. In each...Ch. 16.8 - Use Stokes Theorem to evaluate c F dr. In each...Ch. 16.8 - Use Stokes Theorem to evaluate c F dr. In each...Ch. 16.8 - Prob. 10ECh. 16.8 - (a) Use Stokes Theorem to evaluate c F dr, where...Ch. 16.8 - Prob. 12ECh. 16.8 - Verify that Stokes Theorem is true for the given...Ch. 16.8 - Verify that Stokes Theorem is true for the given...Ch. 16.8 - Verify that Stokes Theorem is true for the given...Ch. 16.8 - A particle moves along line segments from the...Ch. 16.8 - Evaluate c (y + sin x) dx + (z2 + cos y) dy + x3...Ch. 16.8 - If S is a sphere and F satisfies the hypotheses of...Ch. 16.8 - Prob. 20ECh. 16.9 - Verify that the Divergence Theorem is true for the...Ch. 16.9 - Verify that the Divergence Theorem is true for the...Ch. 16.9 - Verify that the Divergence Theorem is true for the...Ch. 16.9 - Verify that the Divergence Theorem is true for the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Prob. 10ECh. 16.9 - Prob. 11ECh. 16.9 - Prob. 12ECh. 16.9 - Prob. 13ECh. 16.9 - Use the Divergence Theorem to calculate the...Ch. 16.9 - Prob. 17ECh. 16.9 - Let F(x, y, z) = z tan-1(y2) i + z3 ln(x2 + 1) j +...Ch. 16.9 - A vector field F is shown. Use the interpretation...Ch. 16.9 - (a) Are the points P1 and P2 sources or sinks for...Ch. 16.9 - Prob. 23ECh. 16.9 - Use the Divergence Theorem to evaluate...Ch. 16.9 - Prob. 25ECh. 16.9 - Prob. 26ECh. 16.9 - Prob. 27ECh. 16.9 - Prob. 28ECh. 16.9 - Prob. 29ECh. 16.9 - Prove each identity, assuming that S and E satisfy...Ch. 16.9 - Suppose S and E satisfy the conditions of the...Ch. 16.9 - Prob. 32ECh. 16 - What is a vector field? Give three examples that...Ch. 16 - Prob. 2RCCCh. 16 - Prob. 3RCCCh. 16 - (a) Define the line integral of a vector field F...Ch. 16 - Prob. 5RCCCh. 16 - (a) What does it mean to say that C F dris...Ch. 16 - Prob. 7RCCCh. 16 - Prob. 8RCCCh. 16 - Prob. 9RCCCh. 16 - Prob. 10RCCCh. 16 - Prob. 11RCCCh. 16 - Prob. 12RCCCh. 16 - Prob. 13RCCCh. 16 - Prob. 14RCCCh. 16 - Prob. 15RCCCh. 16 - In what ways are the Fundamental Theorem for Line...Ch. 16 - Prob. 1RQCh. 16 - Prob. 2RQCh. 16 - Prob. 3RQCh. 16 - Prob. 4RQCh. 16 - Prob. 5RQCh. 16 - Prob. 6RQCh. 16 - Prob. 7RQCh. 16 - Determine whether the statement is true or false....Ch. 16 - Prob. 9RQCh. 16 - Prob. 10RQCh. 16 - Prob. 11RQCh. 16 - Determine whether the statement is true or false....Ch. 16 - Prob. 13RQCh. 16 - Prob. 1RECh. 16 - Evaluate the line integral. 2. C x ds, C is the...Ch. 16 - Prob. 3RECh. 16 - Evaluate the line integral. 4. C y dx + (x + y2)...Ch. 16 - Prob. 5RECh. 16 - Evaluate the line integral. 6. C xy dx + ey dy +...Ch. 16 - Evaluate the line integral. 7. C xy dx + y2 dy +...Ch. 16 - Prob. 8RECh. 16 - Prob. 9RECh. 16 - Prob. 10RECh. 16 - Prob. 11RECh. 16 - Prob. 12RECh. 16 - Prob. 13RECh. 16 - Show that F is a conservative and use this fact to...Ch. 16 - Verify that Greens Theorem is true for the line...Ch. 16 - Prob. 16RECh. 16 - Prob. 17RECh. 16 - Prob. 18RECh. 16 - Prob. 19RECh. 16 - If F and G are vector fields whose component...Ch. 16 - Prob. 21RECh. 16 - If f and g are twice differentiable functions,...Ch. 16 - If f is a harmonic function, that is, 2f = 0, show...Ch. 16 - Prob. 24RECh. 16 - Prob. 25RECh. 16 - Prob. 27RECh. 16 - Prob. 28RECh. 16 - Prob. 29RECh. 16 - Prob. 30RECh. 16 - Prob. 31RECh. 16 - Prob. 32RECh. 16 - Use Stokes Theorem to evaluate C F dr, where F(x,...Ch. 16 - Prob. 34RECh. 16 - Prob. 35RECh. 16 - Compute the outward flux of F(x, y, z) =...Ch. 16 - Let F(x, y, z) = (3x2 yz 3y) i + (x3z 3x) j +...Ch. 16 - Prob. 38RECh. 16 - Find S F n dS, where F(x, y, z) = x i + y j + z k...Ch. 16 - Prob. 40RECh. 16 - Prob. 41RECh. 16 - 1. Let S be a smooth parametric surface and let P...Ch. 16 - Find the positively oriented simple closed curve C...Ch. 16 - Let C be a simple closed piecewise-smooth space...Ch. 16 - Prove the following identity: (F G) = (F )G + (G...Ch. 16 - The figure depicts the sequence of events in each...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Find the maximum rate of change of f at the given point and the direction in which it occurs.arrow_forwardFind the gradient of the function g(x,y)=xy2 at the point (6, −1).arrow_forwardFind the directions of maximum and minimum change of f at the given point, and the values of the maximum and minimum rates of change. fx, y) = 4ye*, (5, 2)arrow_forward
- a. What is the gradient at the point (4,0,1)?arrow_forwardAfter finding your friend, you search for the buffet place. Again it is crowded. You want to know where the food tables are located (there are multiple tables). Assume that people are gathered at the food tables, and the distribution in the room has changed and is now given by the scalar function x² + y². Using the distribution function, determine where the tables are. Using the gradient, determine the path how to find your way there? Visualize the gradient vector.arrow_forward2. Calculate the gradient vector Vf of the function f (x, y) = x² – x + y - x²y - 2y2 at the point (2,1) and sketch it on the attached contour plot (you can save the picture, open in photo editor and use drawing tools). Explain in one paragraph (about 200-300 words) the meaning of the gradient vector Vf(2,1), negative gradient vector -Vf(2,1).arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Basic Differentiation Rules For Derivatives; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=IvLpN1G1Ncg;License: Standard YouTube License, CC-BY