COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 16, Problem 91QAP
To determine
The unknown charge
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two point charges are enclosed by a spherical conducting shell that has an inner and outer radius of 13.0 cm13.0 cm and 15.2 cm,15.2 cm, respectively. One point charge has a charge of ?1=8.30 μC, while the second point charge has an unknown charge ?2. The conducting shell is known to have a net electric charge of −3.30 μC,−3.30 μC, but measurements find that the charge on the outer surface of the shell is 3.70 μC.
Determine the charge ?2 of the second point charge in units of micro coulombs.
A charged metal sphere of radius Rs and a charged, flat metal disk of radius Rp are connected by a long conducting wire.
The sphere has a charge Qs (assume it is uniformly distributed on its surface).
What is Qp, the charge on the disk (assume it is uniformly distributed on its surface)?
Give your answer in nC to at least three digits to avoid being counted off due to rounding.
Rs = 0.40 m, Rp = 0.33 m, Qs = 29.3 nC
Sphere
Qs, Rs
2D Disk
QD, RD
2 narrow, flat metal plates are positioned vertically, 20.00 cm. The first plate has a positive charge with charge density σ=+630.0 mC/m2 and a second plate has an equal but opposite negative charge with charge density σ=-6300.0 mC/m2 . There are also two narrow, flat metal plates positioned horizontally, 30.00 cm apart, with the top plate given a negative charge, and the bottom plate given an equal but opposite positive charge, such that the electric potential of the bottom plate is 5.00 V higher than the top plate. A small sphere with a mass of m =64.35 g, and a charge of q =22.00 mC is attached to a narrow, stiff, massless, insulating rod with a length of L= 8.00 cm, which is pivoted at point O, which is 2.000 cm from the second plate. The sphere/rod unit is angled at 5 degrees with horizontal and released from rest.
Will the sphere/rod ever hit an angle of 0 degrees with the horizontal? If so, how long will it take to reach that point?
Chapter 16 Solutions
COLLEGE PHYSICS
Ch. 16 - Prob. 1QAPCh. 16 - Prob. 2QAPCh. 16 - Prob. 3QAPCh. 16 - Prob. 4QAPCh. 16 - Prob. 5QAPCh. 16 - Prob. 6QAPCh. 16 - Prob. 7QAPCh. 16 - Prob. 8QAPCh. 16 - Prob. 9QAPCh. 16 - Prob. 10QAP
Ch. 16 - Prob. 11QAPCh. 16 - Prob. 12QAPCh. 16 - Prob. 13QAPCh. 16 - Prob. 14QAPCh. 16 - Prob. 15QAPCh. 16 - Prob. 16QAPCh. 16 - Prob. 17QAPCh. 16 - Prob. 18QAPCh. 16 - Prob. 19QAPCh. 16 - Prob. 20QAPCh. 16 - Prob. 21QAPCh. 16 - Prob. 22QAPCh. 16 - Prob. 23QAPCh. 16 - Prob. 24QAPCh. 16 - Prob. 25QAPCh. 16 - Prob. 26QAPCh. 16 - Prob. 27QAPCh. 16 - Prob. 28QAPCh. 16 - Prob. 29QAPCh. 16 - Prob. 30QAPCh. 16 - Prob. 31QAPCh. 16 - Prob. 32QAPCh. 16 - Prob. 33QAPCh. 16 - Prob. 34QAPCh. 16 - Prob. 35QAPCh. 16 - Prob. 36QAPCh. 16 - Prob. 37QAPCh. 16 - Prob. 38QAPCh. 16 - Prob. 39QAPCh. 16 - Prob. 40QAPCh. 16 - Prob. 41QAPCh. 16 - Prob. 42QAPCh. 16 - Prob. 43QAPCh. 16 - Prob. 44QAPCh. 16 - Prob. 45QAPCh. 16 - Prob. 46QAPCh. 16 - Prob. 47QAPCh. 16 - Prob. 48QAPCh. 16 - Prob. 49QAPCh. 16 - Prob. 50QAPCh. 16 - Prob. 51QAPCh. 16 - Prob. 52QAPCh. 16 - Prob. 53QAPCh. 16 - Prob. 54QAPCh. 16 - Prob. 55QAPCh. 16 - Prob. 56QAPCh. 16 - Prob. 57QAPCh. 16 - Prob. 58QAPCh. 16 - Prob. 59QAPCh. 16 - Prob. 60QAPCh. 16 - Prob. 61QAPCh. 16 - Prob. 62QAPCh. 16 - Prob. 63QAPCh. 16 - Prob. 64QAPCh. 16 - Prob. 65QAPCh. 16 - Prob. 66QAPCh. 16 - Prob. 67QAPCh. 16 - Prob. 68QAPCh. 16 - Prob. 69QAPCh. 16 - Prob. 70QAPCh. 16 - Prob. 71QAPCh. 16 - Prob. 72QAPCh. 16 - Prob. 73QAPCh. 16 - Prob. 74QAPCh. 16 - Prob. 75QAPCh. 16 - Prob. 76QAPCh. 16 - Prob. 77QAPCh. 16 - Prob. 78QAPCh. 16 - Prob. 79QAPCh. 16 - Prob. 80QAPCh. 16 - Prob. 81QAPCh. 16 - Prob. 82QAPCh. 16 - Prob. 83QAPCh. 16 - Prob. 84QAPCh. 16 - Prob. 85QAPCh. 16 - Prob. 86QAPCh. 16 - Prob. 87QAPCh. 16 - Prob. 88QAPCh. 16 - Prob. 89QAPCh. 16 - Prob. 90QAPCh. 16 - Prob. 91QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the charge density on the positively charged plate in C/m2?arrow_forwardA solid insulating sphere of radius 0.06 cm carries a total charge of 30 nC. Concentric with this sphere is a conducting spherical shell with an inner radius of 0.13 cm and an outer radius of 0.17 cm and carrying a total charge of -15 nC. Find the charge distribution for the insulating sphere. 6.631x10- m3 33.157x10 -2 С m3 6.631 m3 33.157 C m3arrow_forwardA rectangular charged plate with dimensions of a=0.1 m and b=0.4m has a charge density of o = 312 µC /m?. What is the total charge of the plate? Express your answer in units of uC using one decimal point.arrow_forward
- A rectangular charged plate with dimensions of a=0.3 m and b=0.3m has a charge density of σ = 293 μC /m2. What is the total charge of the plate? Express your answer in units of μC using one decimal point.arrow_forwardA solid insulating sphere of radius 0.06 cm carries a total charge of 30 nC. Concentric with this sphere is a conducting spherical shell with an inner radius of 0.13 cm and an outer radius of 0.17 cm and carrying a total charge of -15 nC. Find the charge distribution for the inner surface of the conducting spherical shell. -3.260 m2 -3.260x10 -2 С m² O -1.413x10 -3 С m2 -1.413 m2arrow_forwardA circular metal plate of radius 17.2 cm carries a total charge of 1.01 μC and the charge is distributed uniformly over the surface of the plate. Determine the surface charge density on the plate and report your answer in µC/m².arrow_forward
- Two thin parallel conducting plates are placed 4.3 µm apart. Each plate is 4.3 cm on a side; one plate carries a net charge of 8.7 µC, and the other plate carries a net charge of −8.7 µC. What is the charge density (in C/m2) on the inside surface of each plate? (Enter the magnitude.)arrow_forwardThe figure shows a solid non-conducting sphere of radius a = 4.4 cm. It is surrounded by a charged conducting spherical shell of inner radius b = 15.3 cm and outer radius c = 24.8 cm. The inner sphere has a net charge of q1 = 9 nC and the conducting spherical shell has a net charge of q2 = -7 nC. a. What is the surface charge density on the inside surface of the spherical shell? b. What is the surface charge density on the outside surface of the spherical shell? c. What is the value of the electric field at a distance r = 58 cm from the centre of the spheres? Please use a negative value to indicate the electric field points toward the centre of the spheres and a positive value to indicate away from the centre of the spheres.arrow_forwardProblem 6: A conducting sphere of radius r1 = 0.18 m has a total charge of Q = 1.4 μC. A second uncharged conducting sphere of radius r2 = 0.42 m is then connected to the first by a thin conducting wire. The spheres are separated by a very large distance compared to their size. What is the total charge on sphere two, Q2 In coulombsarrow_forward
- A solid conducting sphere has a net charge of +23.0 µC uniformly distributed across its surface. If the sphere has a radius of 38.0 mm, what is the surface charge density on the sphere's surface? O 3.80 mC/m^2 O 1.27 mC/m^2 O 0.100 mC/m^2 O 5.07 mC/m^2arrow_forwardAn infinite line of charge with linear density λ1 = 7.2 μC/m is positioned along the axis of a thick insulating shell of inner radius a = 2.7 cm and outer radius b = 4.1 cm. The insulating shell is uniformly charged with a volume density of ρ = -556 μC/m3. a) What is λ2, the linear charge density of the insulating shell? b) What is Ey(P), the value of the y-component of the electric field at point P, located a distance 6.4 cm along the y-axis from the line of charge? c) What is Ex(R), the value of the x-component of the electric field at point R, located a distance 1.35 cm along a line that makes an angle of 30o with the x-axis?arrow_forwardAn infinitely long cylindrical conducting shell of outer radius r1 = 0.10 m and inner radius r2 = 0.08 m initially carries a surface charge density σ = -0.15 μC/m2. A thin wire, with linear charge density λ = 1.1 μC/m, is inserted along the shells' axis. The shell and the wire do not touch and there is no charge exchanged between them. A) What is the new surface charge density, in microcoulombs per square meter, on the inner surface of the cylindrical shell? B) What is the new surface charge density, in microcoulombs per square meter, on the outer surface of the cylindrical shell? C) Enter an expression for the magnitude of the electric field outside the cylinder (r > 0.1 m), in terms of λ, σ, r1, r, and ε0.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
8.02x - Lect 1 - Electric Charges and Forces - Coulomb's Law - Polarization; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=x1-SibwIPM4;License: Standard YouTube License, CC-BY