Fundamentals of Thermal-Fluid Sciences
5th Edition
ISBN: 9780078027680
Author: Yunus A. Cengel Dr., Robert H. Turner, John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 16, Problem 87RQ
To determine
The power required to maintain the tip at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank
A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each
tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of
6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If,
initially, tank A contains pure water and tank B contains 20 kg of salt.
A
6 L/min
0.2 kg/L
x(t)
100 L
4 L/min
x(0) = 0 kg
3 L/min
1 L/min
B
y(t)
100 L
y(0) = 20 kg
2 L/min
Figure Q1 - Mixing problem for interconnected tanks
Determine the mass of salt in each tank at time t≥ 0:
Analytically (hand calculations)
Using MATLAB Numerical Functions (ode45)
Creating Simulink Model
Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.
5. Estimate the friction pressure gradient in a 10.15 cm bore unheated horizontal
pipe for the following conditions:
Fluid-propylene
Pressure 8.175 bar
Temperature-7°C
Mass flow of liquid-2.42 kg/s. Density of liquid-530 kg/m³
Mass flow of vapour-0.605 kg/s. Density of vapour-1.48 kg/m³
Describe the following HVAC systems.
a) All-air systems
b) All-water systems
c) Air-water systems
Graphically represent each system with a sketch.
Chapter 16 Solutions
Fundamentals of Thermal-Fluid Sciences
Ch. 16 - Prob. 1PCh. 16 - Judging from its unit W/m·K, can we define thermal...Ch. 16 - Which is a better heat conductor, diamond or...Ch. 16 - How do the thermal conductivity of gases and...Ch. 16 - Why is the thermal conductivity of superinsulation...Ch. 16 - Why do we characterize the heat conduction ability...Ch. 16 - Consider an alloy of two metals whose thermal...Ch. 16 - What are the mechanisms of heat transfer? How are...Ch. 16 - Write down the expressions for the physical laws...Ch. 16 - How does heat conduction differ from convection?
Ch. 16 - Does any of the energy of the sun reach the earth...Ch. 16 - How does forced convection differ from natural...Ch. 16 - What is the physical mechanism of heat conduction...Ch. 16 - Consider heat transfer through a windowless wall...Ch. 16 - Consider heat loss through the two walls of a...Ch. 16 - Consider two houses that are identical, except...Ch. 16 - Consider two walls of a house that are identical...Ch. 16 - Define emissivity and absorptivity. What is...Ch. 16 - What is a blackbody? How do real bodies differ...Ch. 16 - A wood slab with a thickness of 0.05 m is...Ch. 16 - The inner and outer surfaces of a 4-m × 7-m brick...Ch. 16 - The inner and outer surfaces of a 0.5-cm thick 2-m...Ch. 16 - An aluminum pan whose thermal conductivity is 237...Ch. 16 - The north wall of an electrically heated home is...Ch. 16 - In a certain experiment, cylindrical samples of...Ch. 16 - One way of measuring the thermal conductivity of a...Ch. 16 - A concrete wall with a surface area of 20 m2 and a...Ch. 16 - A hollow spherical iron container with outer...Ch. 16 - The inner and outer glasses of a 4-ft × 4-ft...Ch. 16 - An engineer who is working on the heat transfer...Ch. 16 - Air at 20°C with a convection heat transfer...Ch. 16 - Four power transistors, each dissipating 12 W, are...Ch. 16 - In a power plant, pipes transporting superheated...Ch. 16 - An electric current of 5 A passing through a...Ch. 16 - Hot air at 80°C is blown over a 2-m × 4-m flat...Ch. 16 - A 5-cm-external-diameter, 10-m-long hot-water pipe...Ch. 16 - A transistor with a height of 0.4 cm and a...Ch. 16 - A 300-ft-long section of a steam pipe whose outer...Ch. 16 - The boiling temperature of nitrogen at atmospheric...Ch. 16 - Repeat Prob. 16–43 for liquid oxygen, which has a...Ch. 16 - A series of experiments were conducted by passing...Ch. 16 - A 2.1-m-long, 0.2-cm-diameter electrical wire...Ch. 16 - Using the conversion factors between W and Btu/h,...Ch. 16 - The outer surface of a spacecraft in space has an...Ch. 16 - Consider a person whose exposed surface area is...Ch. 16 - Consider a sealed 20-cm-high electronic box whose...Ch. 16 - Two surfaces, one highly polished and the other...Ch. 16 - A spherical interplanetary probe, with a diameter...Ch. 16 - An electronic package in the shape of a sphere...Ch. 16 - Can all three modes of heat transfer occur...Ch. 16 - Can a medium involve (a) conduction and...Ch. 16 - The deep human body temperature of a healthy...Ch. 16 - We often turn the fan on in summer to help us...Ch. 16 - Consider a 20 cm thick granite wall with a thermal...Ch. 16 - A solid plate, with a thickness of 15 cm and a...Ch. 16 - Air at 20°C with a convection heat transfer...Ch. 16 - An electronic package with a surface area of 1 m2...Ch. 16 - Consider steady heat transfer between two large...Ch. 16 - Consider a person standing in a room at 18°C....Ch. 16 - The inner and outer surfaces of a 25-cm-thick wall...Ch. 16 - A 2-in-diameter spherical ball whose surface is...Ch. 16 - An 800-W iron is left on the iron board with its...Ch. 16 - A 3-m-internal-diameter spherical tank made of...Ch. 16 - Solar radiation is incident on a 5 m2 solar...Ch. 16 - A flat-plate solar collector is used to heat water...Ch. 16 - The roof of a house consists of a 22-cm-thick...Ch. 16 - Consider a flat-plate solar collector placed...Ch. 16 - An AISI 304 stainless steel sheet is going through...Ch. 16 - Engine valves (cp = 440 J/kg·K and = 7840 kg/m3)...Ch. 16 - A cylindrical resistor element on a circuit board...Ch. 16 - The heat generated in the circuitry on the surface...Ch. 16 - A 0.3-cm-thick, 12-cm-high, and 18-cm-long circuit...Ch. 16 - A 40-cm-long, 800-W electric resistance heating...Ch. 16 - It is well known that wind makes the cold air feel...Ch. 16 - An engine block with a surface area measured to be...Ch. 16 - Consider an electrical wire submerged in liquid...Ch. 16 - A cylindrical fuel rod of 2 cm in diameter is...Ch. 16 - Consider a person standing in a room maintained at...Ch. 16 - Consider a 3-m × 3-m × 3-m cubical furnace whose...Ch. 16 - A soldering iron has a cylindrical tip of 2.5 mm...Ch. 16 - A thin metal plate is insulated on the back and...Ch. 16 - Consider a flat-plate solar collector placed on...Ch. 16 - An electric heater with the total surface area of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min 1 L/min B y(t) 100 L y(0) = 20 kg 2 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t≥ 0: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.arrow_forwardased on the corresponding mass flow rates (and NOT the original volumetric flow rates) determine: a) The mass flow rate of the mixed air (i.e., the combination of the two flows) leaving the chamber in kg/s. b) The temperature of the mixed air leaving the chamber. Please use PyscPro software for solving this question. Notes: For part (a), you will first need to find the density or specific volume for each state (density = 1/specific volume). The units the 'v' and 'a' are intended as subscripts: · kgv = kg_v = kgv = kilogram(s) [vapour] kga = kg_a =kga = kilogram(s) [air]arrow_forwardThe answers to this question s wasn't properly given, I need expert handwritten solutionsarrow_forward
- I need expert handwritten solutions to this onlyarrow_forwardTwo large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min B y(t) 100 L y(0) = 20 kg 2 L/min 1 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t > 0: Analytically (hand calculations)arrow_forwardTwo springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its equilibrium position a distance 2 m and then releasing both masses. if m₁ = m₂ = 1 kg, k₁ = 3 N/m and k₂ = 2 N/m. www.m k₁ = 3 (y₁ = 0). m₁ = 1 k2=2 (y₂ = 0) |m₂ = 1 Y2 y 2 System in static equilibrium (Net change in spring length =32-31) System in motion Figure Q3 - Coupled mass-spring system Determine the equations of motion y₁(t) and y₂(t) for the two masses m₁ and m₂ respectively: Analytically (hand calculations)arrow_forward
- 100 As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the spring constant at time t is k(t) = t sin N/m. If the mass-spring system has mass m = 2 kg and a damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is subjected to the harmonic external force f(t) = 100 cos 3t N. Find at least the first four nonzero terms in a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement: Analytically (hand calculations)arrow_forwardthis is answer to a vibrations question. in the last part it states an assumption of x2, im not sure where this assumption comes from. an answer would be greatly appreciatedarrow_forwardPlease answer with the sketches.arrow_forward
- The beam is made of elastic perfectly plastic material. Determine the shape factor for the cross section of the beam (Figure Q3). [Take σy = 250 MPa, yNA = 110.94 mm, I = 78.08 x 106 mm²] y 25 mm 75 mm I 25 mm 200 mm 25 mm 125 Figure Q3arrow_forwardA beam of the cross section shown in Figure Q3 is made of a steel that is assumed to be elastic- perfectectly plastic material with E = 200 GPa and σy = 240 MPa. Determine: i. The shape factor of the cross section ii. The bending moment at which the plastic zones at the top and bottom of the bar are 30 mm thick. 15 mm 30 mm 15 mm 30 mm 30 mm 30 mmarrow_forwardA torque of magnitude T = 12 kNm is applied to the end of a tank containing compressed air under a pressure of 8 MPa (Figure Q1). The tank has a 180 mm inner diameter and a 12 mm wall thickness. As a result of several tensile tests, it has been found that tensile yeild strength is σy = 250 MPa for thr grade of steel used. Determine the factor of safety with respect to yeild, using: (a) The maximum shearing stress theory (b) The maximum distortion energy theory T Figure Q1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license