The hydrogen ion concentration of solution with pH 9 should be compared with the hydrogen ion concentration of solution with pOH 9. Concept Introduction: The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic. The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows: p H = − log H + Here, H + is concentration of hydrogen ion. Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows: p O H = − log OH − Here, OH − is concentration of hydroxide ion. pH and pOH of a solution are related to each other as follows: p H + p O H = 14 In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the pH value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.
The hydrogen ion concentration of solution with pH 9 should be compared with the hydrogen ion concentration of solution with pOH 9. Concept Introduction: The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic. The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows: p H = − log H + Here, H + is concentration of hydrogen ion. Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows: p O H = − log OH − Here, OH − is concentration of hydroxide ion. pH and pOH of a solution are related to each other as follows: p H + p O H = 14 In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the pH value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.
Solution Summary: The author explains that the concentration of hydrogen ions in a solution determines the acidity of the solution.
The hydrogen ion concentration of solution with pH 9 should be compared with the hydrogen ion concentration of solution with pOH 9.
Concept Introduction:
The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.
The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:
pH=−logH+
Here, H+ is concentration of hydrogen ion.
Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:
pOH=−logOH−
Here, OH− is concentration of hydroxide ion.
pH and pOH of a solution are related to each other as follows:
pH+pOH=14
In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the pH value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.
Potential Energy (kJ)
1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction.
AH = -950 kJ
AH = 575 kJ
(i) Cl₂ (g) + Pt (s) 2C1 (g) + Pt (s)
Ea = 1550 kJ
(ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s)
(iii) Cl (g) + CICO (g) → Cl₂CO (g)
Ea = 2240 kJ
Ea = 2350 kJ
AH = -825 kJ
2600
2400
2200
2000
1800
1600
1400
1200
1000
a. Draw the potential energy diagram for the reaction. Label the data points for clarity.
The potential energy of the reactants is 600 kJ
800
600
400
200
0
-200-
-400
-600-
-800-
Reaction Progress
Can u help me figure out the reaction mechanisms for these, idk where to even start
Hi, I need your help with the drawing, please. I have attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.