
Concept explainers
Using the information presented in the following table, identify the processing sequence that would result using (1) FCFS, (2) SPT, (3) EDD, and (4) CR. For each method, determine (1) average job flow time, (2) average job tardiness, and (3) average number of jobs in the system. Jobs are listed in order of arrival. (Hint: First determine the total job time for each job by computing the total processing time for the job and then adding in the setup time. All times and due dates are in hours.)
1)

To determine: Sequence of jobs based on decision rule First Come First Served (FCFS).
Introduction: First Come First Served is the scheduling rule, which helps to arrange the sequence in the order. Here, the first come would be served first.
Answer to Problem 7P
Explanation of Solution
Given information:
Job | Processing time per unit | Units per job | Setup time | Due date |
a | 0.14 | 45 | 0.7 | 4 |
b | 0.25 | 14 | 0.5 | 10 |
c | 0.1 | 18 | 0.2 | 12 |
d | 0.25 | 40 | 1 | 20 |
e | 0.1 | 75 | 0.5 | 15 |
Due date is given. Job time should be determined using the given processing time per unit, units per job, and setup time.
Example:
The procedure should be repeated for all the jobs. The resultant table is as follows:
Job | Job time (hours) | Due date (hours) |
a | 7 | 4 |
b | 4 | 10 |
c | 2 | 12 |
d | 11 | 20 |
e | 8 | 15 |
Determine the sequence using FCFS:
According to FCFS, the first come would be served first. Hence, the jobs should be sequenced in the order as per its arrival.
Hence, the sequence of jobs using FCFS is a-b-c-d-e.
Determine average flow time, average tardiness, and average number of jobs for FCFS:
Job | Processing time (hours) | Due date (hours) | Flow time | Tardiness |
a | 7 | 4 | 7 | 3 |
b | 4 | 10 | 11 | 1 |
c | 2 | 12 | 13 | 1 |
d | 11 | 20 | 24 | 4 |
e | 8 | 15 | 32 | 17 |
Total | 32 | 61 | 87 | 26 |
Average | 6.4 | 12.2 | 17.4 | 5.2 |
Supporting calculation:
Processing time and due date are given for each job. Flow time is the cumulative of the processing time.
Tardiness of Job a:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job b is 3.
Tardiness of Job b:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job b is 1.
Tardiness of Job c:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job c is 1.
Tardiness of Job d:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job d is 4.
Tardiness of Job e:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job e is 17.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 17.40 hours.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 5.20 hours.
Average number of jobs:
It can be determined by dividing the total flow time and total processing time.
Hence, average number of jobs is 2.72 jobs.
2)

To determine: Sequence of jobs based on decision rule Shortest Processing Time (SPT).
Introduction: Shortest Processing Tine is the scheduling rule, which helps to arrange the sequence in the order. Here, job with the shortest duration would be served first. Then, the process would be going on from shortest to largest duration.
Answer to Problem 7P
Explanation of Solution
Given information:
Job | Processing time per unit | Units per job | Setup time | Due date |
a | 0.14 | 45 | 0.7 | 4 |
b | 0.25 | 14 | 0.5 | 10 |
c | 0.1 | 18 | 0.2 | 12 |
d | 0.25 | 40 | 1 | 20 |
e | 0.1 | 75 | 0.5 | 15 |
Due date is given. Job time should be determined using the given processing time per unit, units per job, and setup time.
Example:
The procedure should be repeated for all the jobs. The resultant table is as follows:
Job | Job time (hours) | Due date (hours) |
a | 7 | 4 |
b | 4 | 10 |
c | 2 | 12 |
d | 11 | 20 |
e | 8 | 15 |
Determine the sequence using SPT:
According to SPT, the job that has the shortest processing would be served first and it goes on as the processing time increase. Duration should be assembled in the ascending order
Hence, the sequence of jobs using SPT is c-b-a-e-d.
Determine average flow time, average tardiness, and average number of jobs for SPT:
Job | Job time (hours) | Due date (hours) | Flow time | Tardiness |
c | 2 | 12 | 2 | 0 |
b | 4 | 10 | 6 | 0 |
a | 7 | 4 | 13 | 9 |
e | 8 | 15 | 21 | 6 |
d | 11 | 20 | 32 | 12 |
Total | 32 | 61 | 74 | 27 |
Average | 6.4 | 12.2 | 14.8 | 5.4 |
Supporting calculation:
Processing time and due date are given for each job. Flow time is the cumulative of the processing time.
Tardiness of Job c, and Job b:
Flow time of Job c and Job b is less than its respective due date. Hence, there would be no tardiness.
Tardiness of Job a:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job a is 9.
Tardiness of Job e:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job e is 6.
Tardiness of Job d:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job d is 12.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 14.80 hours.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 5.40 hours.
Average number of jobs:
It can be determined by dividing the total flow time and total processing time.
Hence, average number of jobs is 2.31 jobs.
3)

To determine: Sequence of jobs based on decision rule Earliest Due Date (EDD).
Introduction: Earliest Due Date is the scheduling rule, which helps to arrange the sequence in the order. Here, job with the earliest due date would be served first. Then, the process would be going on from earliest due date to latest due date.
Answer to Problem 7P
Explanation of Solution
Given information:
Job | Processing time per unit | Units per job | Setup time | Due date |
a | 0.14 | 45 | 0.7 | 4 |
b | 0.25 | 14 | 0.5 | 10 |
c | 0.1 | 18 | 0.2 | 12 |
d | 0.25 | 40 | 1 | 20 |
e | 0.1 | 75 | 0.5 | 15 |
Due date is given. Job time should be determined using the given processing time per unit, units per job, and setup time.
Example:
The procedure should be repeated for all the jobs. The resultant table is as follows:
Job | Job time (hours) | Due date (hours) |
a | 7 | 4 |
b | 4 | 10 |
c | 2 | 12 |
d | 11 | 20 |
e | 8 | 15 |
Determine the sequence using EDD:
According to EDD, the job that has the earliest due date would be served first and it goes on as the due date increases. The job should be arranged based on due date. Due date should be assembled in the ascending order
Hence, the sequence of jobs using EDD is a-b-c-e-d.
Determine average flow time, average tardiness, and average number of jobs for EDD:
Job | Job time (hours) | Due date (hours) | Flow time | Tardiness |
a | 7 | 4 | 7 | 3 |
b | 4 | 10 | 11 | 1 |
c | 2 | 12 | 13 | 1 |
e | 8 | 15 | 21 | 6 |
d | 11 | 20 | 32 | 12 |
Total | 32 | 61 | 84 | 23 |
Average | 6.4 | 12.2 | 16.8 | 4.6 |
Supporting calculation:
Processing time and due date are given for each job. Flow time is the cumulative of the processing time.
Tardiness of Job a:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job b is 3.
Tardiness of Job b:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job b is 1.
Tardiness of Job c:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job c is 1.
Tardiness of Job e:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job e is 6.
Tardiness of Job d:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job d is 12.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 16.80 hours.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 4.60 hours.
Average number of jobs:
It can be determined by dividing the total flow time and total processing time.
Hence, average number of jobs is 2.63 jobs.
4)

To determine: Sequence of jobs based on decision rule critical ratio.
Introduction: Critical ratio is kind of scheduling rule that helps to identify that, the task or job is on the correct track. It would help to identify if the task is behind or ahead of the schedule.
Answer to Problem 7P
Explanation of Solution
Given information:
Job | Processing time per unit | Units per job | Setup time | Due date |
a | 0.14 | 45 | 0.7 | 4 |
b | 0.25 | 14 | 0.5 | 10 |
c | 0.1 | 18 | 0.2 | 12 |
d | 0.25 | 40 | 1 | 20 |
e | 0.1 | 75 | 0.5 | 15 |
Due date is given. Job time should be determined using the given processing time per unit, units per job, and setup time.
Example:
The procedure should be repeated for all the jobs. The resultant table is as follows:
Job | Job time (hours) | Due date (hours) |
a | 7 | 4 |
b | 4 | 10 |
c | 2 | 12 |
d | 11 | 20 |
e | 8 | 15 |
Determine the sequence using critical ratio:
Initial critical ratio should be determined at day 0:
Job | Processing time (hours) | Due date | Critical ratio |
a | 7 | 4 | 0.57 |
b | 4 | 10 | 2.5 |
c | 2 | 12 | 6 |
d | 11 | 20 | 1.82 |
e | 8 | 15 | 1.88 |
Critical ratio for Job a:
It is can be determined by dividing the value attained by subtracting the completion day of previous job from the due date of current job with the processing time.
Note: Process continues for all the jobs.
Job a has the lowest critical ratio. Thus, it will be completed first. Hence, Job a would be completed first in the sequence of jobs.
Determine the critical ratio after the completion of Job a:
As the processing time of job a is 7 hours, completion day of completed day would be 7.
Job | Processing time (hours) | Due date | Critical ratio |
a | - | - | - |
b | 4 | 10 | 0.75 |
c | 2 | 12 | 2.5 |
d | 11 | 20 | 1.18 |
e | 8 | 15 | 1 |
Critical ratio for Job b:
It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.
Note: Process continues for all the jobs.
Job b has the lowest critical ratio. Hence, Job b would be completed next in the sequence of jobs.
Determine the critical ratio after the completion of Job a and Job b:
As the processing time of job a is 7 hours and Job b is 4, completion day of completed day would be 11 (7+4).
Job | Processing time (hours) | Due date | Critical ratio |
a | - | - | - |
b | - | - | - |
c | 2 | 12 | 0.5 |
d | 11 | 20 | 0.82 |
e | 8 | 15 | 0.5 |
Critical ratio for Job c:
It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.
Job c has the lowest critical ratio (break the tie arbitrarily). Hence, Job c would be completed next in the sequence of jobs after Job a and Job b.
Determine the critical ratio after the completion of Job a, Job b and Job c:
As the processing time of job a is 7 hours, Job b is 4, and Job c is 2 hours. completion day of completed day would be 13 (7+4+2).
Job | Processing time (hours) | Due date | Critical ratio |
a | - | - | - |
b | - | - | - |
c | - | - | - |
d | 11 | 20 | 0.82 |
e | 8 | 15 | 0.5 |
Critical ratio for Job d:
It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.
Job e has the lowest critical ratio. Hence, Job e would be completed next in the sequence of jobs after Job a, Job b, and Job c.
As Job d is the remaining job, it will be completed next.
Hence, the sequence of jobs using critical ratio is a-b-c-e-d.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 16.80 hours.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 4.60 hours.
Average number of jobs:
It can be determined by dividing the total flow time and total processing time.
Hence, average number of jobs is 2.63 jobs.
Want to see more full solutions like this?
Chapter 16 Solutions
Loose Leaf for Operations Management (The Mcgraw-hill Series in Operations and Decision Sciences)
- SIPOC Process Supplier Machines Quality Group Leader Double Output Customers Inputs Solutions End of batch Inspection verification Scrap evaluation Sampling Verification Batch complete Evaluation Completed Quality Group Leader Samplings verified Quality Samplings verified Quality Barcode programed Mechanic Parameters registered Quality Line verified Quality Line Verified Quality Second verification Barcode Parameters Line Inspection Second Line Inspection Lot and Expiration Date Quality Quality Mechanic Mechanic Quality Machines Quality Group Leader Quality Quality Quality Batch Verification Process complete Revision Review Sampling Verification Barcode Scanner Machine Parameters Line Clearance Line Clearance Machine Remove Lot Status Verification Close floor Final MFG Review Final QA Review Close Batch Machine removed Lot verified Floor closed MFG Reviewed Process reviewed Batch closed Mechanic Group Leader Quality Quality Quality Group Leaderarrow_forwardAn assessment of gender leadership and corporate culture.Kindly provide the following, citing it using in-text referencing: • A thorough exploration of gender dynamics and concepts.• Creating a clear plan to address gender bias and promote inclusive leadership.• An examination of female leadership dynamics and their impact on performance. • Comprehensive justification behind the proposal.arrow_forwardAssessment of Strategic Leadership and Global Context Provide the below in detail:· A comprehensive analysis of the current strategy,· Develop a new comprehensive strategic leadership framework that tackles the challenges of leading a global company while balancing global standards and responding to local context and challenges.· Justify a framework by drawing on and applying relevant theories of strategic leadership and global management.· It needs substantial depth and detail.· Conduct a critical evaluation of strategic leadership in a global context.arrow_forward
- Assessing Leadership Ethics and Cross-cultural DiversityProvide the below with in-cite text referencing:- Investigate ethical issues and how they influence diversity and cross-cultural leadership.• Develop an ethical decision-making model that addresses cross-cultural concerns in emerging markets, such as Africa.· Conduct comprehensive analysis and modelling if necessary.- Provide a thorough ethical analysis that considers cross-cultural issues.· Careful evaluation of potential outcomes.- The proposed ethical decision-making technique is both novel and defendable.· Promoting diversity and recognising cross-cultural differences.arrow_forwardNeed help, have no idea where to start and love help upon a paper idea with no AI and soemthing original please.arrow_forwardAbout the Assignment In this course, you learned how a business chooses a positioning strategy in the marketplace and focuses on these areas by evaluating management's use of production types, creating effective productivity, and analyzing the competitiveness of production. Now you will choose a retail organization and propose a positioning marketing strategy that analyzes the organizational management decisions related to any competitiveness of cost, quality, flexibility, speed, innovation, and/or service. Prompt Choose an organization that focuses on one of these areas in the market: competitiveness of cost, quality, flexibility, speed, innovation, and/or service. An example would be choosing ALDI or LIDL. Their cost marketing positioning strategy is providing customers with international goods for a lower price and, in turn, saving business fees by not providing bagging products for free. (This is just an example. Do not use this example for your project.) Use the following steps…arrow_forward
- Can you guys help me with this? Thank you! The project is Terminal 1 at JFK International Airport Here's what need to do: Time Content: What was the estimated time of the project; what was the final time (or the estimated date) of the project; what are the major contributing factors for the disparity? (Please make sure all the information here can be present around 2 minutes) Risk management content: Discuss a major risk management event that affected the project. while researching if any team member finds an interesting risk management event *Include sources that you have the information when go over these 2 parts above.arrow_forwardI only need help with part C. Please and thank you :) ANSWERED: Gracie recorded the following times assembling a watch. Performance rating given is 95%. A) Average time of Gracie for the Operation? (round to three decimal places) ANSWER=0.107 B) normal time for this operation? (round to three decimal places) ANSWER=0.102 C) HELP PLEASE. "For a given personal allowance of 8% the standard time for the operation is how many minutes?" (round your answer to three decimal places)arrow_forwardGracie recorded the following times assembling a watch. Performance rating given is 95%. Average time of Gracie for the Operation? (round to three decimal places) normal time for this operation? (round to three decimal places)arrow_forward
- As stated before, the key advantage of the LLC is its limited liability that’s provided. When it comes to financial problems faced in their business, the LLC helps to cover the owner's personal assets, like his home or savings. Although this sounds amazing it is important to not that this is not always absolute. This being said, it’s very crucial that the owner should properly keep their finances – personal and business- separate. This will ensure that the legal protection is useful. Disadvantageously, the owner will still have to contribute to Social Security and Medicare Self-emplyment tax?arrow_forwardMonczka Trent shipping is the logistics vendor for Handfield Manufacturing in Ohio. Handfield has daily shipments of a power steering pump from its Ohio plant to an auto assembly line in Alabama. The value of the standard shipment is $261,090. Monczka Trent has two options: (1) it's standard two day shipment or (2) a subcontractor who will team drive overnight with an effective delivery of one day. The extra driver costs $190. Handfield's holding cost is 35% annually for this kind of inventory. A) _ is more economical, with a daily holding cost of _?B) What production issues are not included in the data presented?arrow_forwardSasha is a loan processor for a bank. She's been timed performing four work elements. The allowances for tasks such as this are personal, 7%; fatigue. 8%; fatigue, and delay of 2%. The normal time for the complete operation = (round your irresponsive two decimal places) Standard time for this process = (round your response to 2 decimal places)arrow_forward
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Understanding Management (MindTap Course List)ManagementISBN:9781305502215Author:Richard L. Daft, Dorothy MarcicPublisher:Cengage Learning

