Physics for Scientists and Engineers, Vol. 1
Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16, Problem 71P

(a)

To determine

The maximum displacement and maximum speed of a point on the string a x=0.10m .

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The wave function of standing wave is given as y(x,t)=(0.020)sin(4πx)cos(60πt) .

Formula used:

Write expression for wave function as maximum displacement.

  ymax(x)=(0.020)sin(4πx)........ (1)

Differentiate above expression for t .

  vymax(x)=(1.2πm/s)sin[(4πm1)x]....... (2)

Calculation:

Substitute 0.10m for x in equation (1).

  ymax(0.10m)=(0.020)sin(4π( 0.10m))ymax(0.10m)=0.019m

Substitute 0.10m for x in equation (2).

  vymax(0.10m)=(1.2πm/s)sin[(4π m 1)(0.10m)]vymax(0.10m)=3.6m/s

Conclusion:

Thus, the maximum displacement is 0.019m and maximum speed is 3.6m/s .

(b)

To determine

The maximum displacement and maximum speed of a point on the string a x=0.25m .

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

The wave function of standing wave is given as y(x,t)=(0.020)sin(4πx)cos(60πt) .

Formula used:

Write expression for wave function as maximum displacement.

  ymax(x)=(0.020)sin(4πx)........ (1)

Differentiate above expression for t .

  vymax(x)=(1.2πm/s)sin[(4πm1)x]....... (2)

Calculation:

Substitute 0.25m for x in equation (1).

  ymax(0.25m)=(0.020)sin(4π( 0.25m))ymax(0.25m)=0m

Substitute 0.25m for x in equation (2).

  vymax(0.25m)=(1.2πm/s)sin[(4π m 1)(0.25m)]vymax(0.25m)=0m/s

Conclusion:

Thus, the maximum displacement is 0m and maximum speed is 0m/s .

(c)

To determine

The maximum displacement and maximum speed of a point on the string a x=0.30m .

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

The wave function of standing wave is given as y(x,t)=(0.020)sin(4πx)cos(60πt) .

Formula used:

Write expression for wave function as maximum displacement.

  ymax(x)=(0.020)sin(4πx)........ (1)

Differentiate above expression for t .

  vymax(x)=(1.2πm/s)sin[(4πm1)x]....... (2)

Calculation:

Substitute 0.30m for x in equation (1).

  ymax(0.30m)=(0.020)sin(4π( 0.30m))ymax(0.30m)=0.011m

Substitute 0.30m for x in equation (2).

  vymax(0.30m)=(1.2πm/s)sin[(4π m 1)(0.30m)]vymax(0.30m)=2.2m/s

Conclusion:

Thus, the maximum displacement is 0.011m and maximum speed is 2.2m/s .

(d)

To determine

The maximum displacement and maximum speed of a point on the string a x=0.50m .

(d)

Expert Solution
Check Mark

Explanation of Solution

Given:

The wave function of standing wave is given as y(x,t)=(0.020)sin(4πx)cos(60πt) .

Formula used:

Write expression for wave function as maximum displacement.

  ymax(x)=(0.020)sin(4πx)........ (1)

Differentiate above expression for t .

  vymax(x)=(1.2πm/s)sin[(4πm1)x]....... (2)

Calculation:

Substitute 0.50m for x in equation (1).

  ymax(0.50m)=(0.020)sin(4π( 0.50m))ymax(0.50m)=0m

Substitute 0.50m for x in equation (2).

  vymax(0.50m)=(1.2πm/s)sin[(4π m 1)(0.50m)]vymax(0.50m)=0m/s

Conclusion:

Thus, the maximum displacement is 0m and maximum speed is 0m/s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).

Chapter 16 Solutions

Physics for Scientists and Engineers, Vol. 1

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY