Physics for Scientists and Engineers, Vol. 1
Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
bartleby

Concept explainers

Question
Book Icon
Chapter 16, Problem 64P

(a)

To determine

The wave function for this vibration.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

Length of string is 2.00m .

Maximum amplitude is 3.00cm .

Frequency of the string is 100Hz .

Formula used:

Write expression for general form of wave function for 3rd harmonic.

  y3(x,t)=A3sin(k3x)cos(ω3t)....... (1)

Write expression for angular velocity.

  ω3=2πf3......... (2)

Write expression for wavelength of standing wave for string fixed at one end.

  λ3=43L......... (3)

Write expression for wave number.

  k3=2πλ3......... (4)

Calculation:

Substitute 100Hz for f3 in equation (2).

  ω3=2π(100Hz)=200πs-1

Substitute 2m for L in equation (3).

  λ3=43(2m)=83m

Substitute 83m for λ3 in equation (4).

  k3=2π8/3=3π4

Substitute 3.00cm for A3 , 200πs-1 for ω3 , 83m for λ3 and 3π4 for k3 in equation (1).

  y3(x,t)=(3.00cm)( 1m 100cm)sin( 3π4x)cos(200πs -1t)y3(x,t)=(0.03m)sin( 3π4x)cos(200πs -1t)

Conclusion:

Thus, the wave function for vibration is y3(x,t)=(0.03m)sin(3π4x)cos(200πs-1t) .

(b)

To determine

Function for kinetic energy; time at which kinetic energy is maximum.

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

Length of string is 2.00m .

Maximum amplitude is 3.00cm .

Frequency of the string is 100Hz .

Formula used:

Write expression for general form of wave function for 3rd harmonic.

  y3(x,t)=A3sin(k3x)cos(ω3t)......... (1)

Write expression for angular velocity.

  ω3=2πf3......... (2)

Write expression for wavelength of standing wave for string fixed at one end.

  λ3=43L......... (3)

Write expression for wave number.

  k3=2πλ3......... (4)

Write expression for kinetic energy.

  dK=12μvy2dx......... (5)

Calculation:

Substitute 100Hz for f3 in equation (2).

  ω3=2π(100Hz)=200πs-1

Substitute 2m for L in equation (3).

  λ3=43(2m)=83m

Substitute 83m for λ3 in equation (4).

  k3=2π8/3=3π4

Substitute 3.00cm for A3 , 200πs-1 for ω3 , 83m for λ3 and 3π4 for k3 in equation (1).

  y3(x,t)=(3.00cm)( 1m 100cm)sin( 3π4x)cos(200πs -1t)y3(x,t)=(0.03m)sin( 3π4x)cos(200πs -1t)

Differentiate above expression with respect to t .

  d( y 3 ( x,t ))dt=ddt[(0.03m)sin( 3π 4x)cos(200π s -1t)]d( y 3 ( x,t ))dt=(200πs -1)(0.03m)sin( 3π4x)sin(200πs -1t)d( y 3 ( x,t ))dt=(6πm/s)sin( 3π4x)sin(200πs -1t)

Substitute vy for d(y3( x,t))dt in above expression.

  vy=(6πm/s)sin(3π4x)sin(200πs-1t)

Substitute (6πm/s)sin(3π4x)sin(200πs-1t) for vy in equation (5).

  dK=12μ(( 6πm/s )sin( 3π 4 x)sin( 200π s -1 t))2dxdK=12(( 6πm/s )sin( 3π 4 x)sin( 200π s -1 t))2μdx

Write expression for condition of maximum kinetic energy.

  sin(200πs-1t)=1

Solve above expression.

  (200πs -1)t=π2,3π2,.....t=1200πs -1π2,1200πs -13π2,...t=0.0025s,0.0075s,...

Conclusion:

Thus the function for kinetic energy is dK=12(( 6πm/s )sin( 3π 4 x)sin( 200π s -1 t))2μdx ; time at which kinetic energy is maximum are 0.0025s,0.0075s,... .

(c)

To determine

The maximum kinetic energy of string by integration.

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

The function for kinetic energy is dK=12(( 6πm/s )sin( 3π 4 x)sin( 200π s -1 t))2μdx

Formula used:

Write expression for general form of wave function for 3rd harmonic.

  y3(x,t)=A3sin(k3x)cos(ω3t)......... (1)

Write expression for kinetic energy.

  dK=12μvy2dx......... (2)

Calculation:

Differentiate equation (1) with respect to t .

  ddx(y3( x,t))=ddx[A3sin( k 3x)cos( ω 3t)]vy=ω3A3sin(k3x)sin(ω3t)

Substitute ω3A3sin(k3x)sin(ω3t) for vy in equation (2).

  dK=12μ(ω3A3sin( k 3 x)sin( ω 3 t))2dx

Integrate above expression from 0 to L .

  dK=0L[ 1 2μ ( ω 3 A 3 sin( k 3 x )sin( ω 3 t ) ) 2]dxKmax=14mω2A2

Conclusion:

Thus, the value of maximum kinetic energy is Kmax=14mω2A2 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A uniform ladder of length L and weight w is leaning against a vertical wall. The coefficient of static friction between the ladder and the floor is the same as that between the ladder and the wall. If this coefficient of static friction is μs : 0.535, determine the smallest angle the ladder can make with the floor without slipping. ° = A 14.0 m uniform ladder weighing 480 N rests against a frictionless wall. The ladder makes a 55.0°-angle with the horizontal. (a) Find the horizontal and vertical forces (in N) the ground exerts on the base of the ladder when an 850-N firefighter has climbed 4.10 m along the ladder from the bottom. horizontal force magnitude 342. N direction towards the wall ✓ vertical force 1330 N up magnitude direction (b) If the ladder is just on the verge of slipping when the firefighter is 9.10 m from the bottom, what is the coefficient of static friction between ladder and ground? 0.26 × You appear to be using 4.10 m from part (a) for the position of the…
Your neighbor designs automobiles for a living. You are fascinated with her work. She is designing a new automobile and needs to determine how strong the front suspension should be. She knows of your fascination with her work and your expertise in physics, so she asks you to determine how large the normal force on the front wheels of her design automobile could become under a hard stop, ma when the wheels are locked and the automobile is skidding on the road. She gives you the following information. The mass of the automobile is m₂ = 1.10 × 103 kg and it can carry five passengers of average mass m = 80.0 kg. The front and rear wheels are separated by d = 4.45 m. The center of mass of the car carrying five passengers is dCM = 2.25 m behind the front wheels and hcm = 0.630 m above the roadway. A typical coefficient of kinetic friction between tires and roadway is μk 0.840. (Caution: The braking automobile is not in an inertial reference frame. Enter the magnitude of the force in N.)…
John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (see the figure below). The handles make an angle of 0 = 17.5° with the ground. Due to the weight of Rachel and the wheelbarrow, a downward force of 403 N is exerted at the center of the wheel, which has a radius of 16.0 cm. Assume the brick remains fixed and does not slide along the ground. Also assume the force applied by John is directed exactly toward the center of the wheel. (Choose the positive x-axis to be pointing to the right.) (a) What force (in N) must John apply along the handles to just start the wheel over the brick? (No Response) N (b) What is the force (magnitude in kN and direction in degrees clockwise from the -x-axis) that the brick exerts on the wheel just as the wheel begins to lift over the brick? magnitude (No Response) KN direction (No Response) ° clockwise from the -x-axis

Chapter 16 Solutions

Physics for Scientists and Engineers, Vol. 1

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning