Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 63AP
To determine
The strain results in the transverse speed of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A solid copper cube has an edge length of 89.9 cm. How much stress must be applied to the cube to reduce the edge length to 89 cm?
The bulk modulus of copper is 1.4 x 101¹ N/m².
Number i 4.2
Units
N/m^2 or Pa
The bonded single lap joint shown below has a width, w = 97 mm and an overlap length, I = 28 mm.
It has an applied tensile load, F. of 4385 N and a layer of adhesive h = 1.1 mm thick between the
two members. The shear modulus of the adhesive is G = 3.7 GPa.
W
x-direction
(a) What is the shear strain in the adhesive? Give your answer in radians, to 2 s.f.
Shear strain:
rad
(b) Assuming that there is no deformation in the wooden sheets, what is the displacement of the upper
plate in the x-direction? Give your answer in millimetres, to 2 s.f
Displacement:
mm
A 1.25 m long cable has a diameter 3.50 mm with a Young’s Modulus, E, of 9.75 x 109 N/m2 . When the wire is placed under tension, it experiences a stress of 202.52 x 106 N/m2 , the length of the cable extends by 36.35 mm. Calculate the force that the cable experiences under tension and the strain energy density (U/V) due to deformation. Give your answers in newtons (N) to 2 decimal places for the force; and in joules per cubic metre (J/m3 ) for the strain energy density to 2 decimal places. Assume the cable is solid and the material is homogeneous.
Chapter 16 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 16.1 - Prob. 16.1QQCh. 16.2 - A sinusoidal wave of frequency f is traveling...Ch. 16.2 - The amplitude of a wave is doubled, with no other...Ch. 16.3 - Suppose you create a pulse by moving the free end...Ch. 16.5 - Which of the following, taken by itself, would be...Ch. 16 - Prob. 1OQCh. 16 - Prob. 2OQCh. 16 - Prob. 3OQCh. 16 - Prob. 4OQCh. 16 - Prob. 5OQ
Ch. 16 - Prob. 6OQCh. 16 - Prob. 7OQCh. 16 - Prob. 8OQCh. 16 - Prob. 9OQCh. 16 - Prob. 1CQCh. 16 - Prob. 2CQCh. 16 - Prob. 3CQCh. 16 - Prob. 4CQCh. 16 - Prob. 5CQCh. 16 - Prob. 6CQCh. 16 - Prob. 7CQCh. 16 - Prob. 8CQCh. 16 - Prob. 9CQCh. 16 - A seismographic station receives S and P waves...Ch. 16 - Prob. 2PCh. 16 - Prob. 3PCh. 16 - Two points A and B on the surface of the Earth are...Ch. 16 - Prob. 5PCh. 16 - Prob. 6PCh. 16 - Prob. 7PCh. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - When a particular wire is vibrating with a...Ch. 16 - Prob. 11PCh. 16 - Prob. 12PCh. 16 - Prob. 13PCh. 16 - Prob. 14PCh. 16 - Prob. 15PCh. 16 - Prob. 16PCh. 16 - Prob. 17PCh. 16 - A sinusoidal wave traveling in the negative x...Ch. 16 - Prob. 19PCh. 16 - Prob. 20PCh. 16 - Prob. 21PCh. 16 - Prob. 22PCh. 16 - Prob. 23PCh. 16 - Prob. 24PCh. 16 - An Ethernet cable is 4.00 m long. The cable has a...Ch. 16 - Prob. 26PCh. 16 - Prob. 27PCh. 16 - Prob. 28PCh. 16 - Tension is maintained in a string as in Figure...Ch. 16 - Prob. 30PCh. 16 - Prob. 31PCh. 16 - Prob. 32PCh. 16 - Transverse waves are being generated on a rope...Ch. 16 - Prob. 34PCh. 16 - Prob. 35PCh. 16 - Prob. 36PCh. 16 - Prob. 37PCh. 16 - A horizontal string can transmit a maximum power...Ch. 16 - Prob. 39PCh. 16 - A two-dimensional water wave spreads in circular...Ch. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - Show that the wave function y = eb(x vt) is a...Ch. 16 - Prob. 44PCh. 16 - Prob. 45APCh. 16 - Prob. 46APCh. 16 - Prob. 47APCh. 16 - Prob. 48APCh. 16 - Prob. 49APCh. 16 - Prob. 50APCh. 16 - A transverse wave on a string is described by the...Ch. 16 - A sinusoidal wave in a string is described by the...Ch. 16 - Prob. 53APCh. 16 - Prob. 54APCh. 16 - Prob. 55APCh. 16 - Prob. 56APCh. 16 - Prob. 57APCh. 16 - Prob. 58APCh. 16 - A wire of density is tapered so that its...Ch. 16 - Prob. 60APCh. 16 - Prob. 61APCh. 16 - Prob. 62APCh. 16 - Prob. 63APCh. 16 - Prob. 64CPCh. 16 - Prob. 65CPCh. 16 - Prob. 66CPCh. 16 - Prob. 67CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A copper rod with length 1.4 m and cross-sectional area 2.0 cm2 is fastened to a steel rod of length L and cross-sectional area 1.0 cm2. The compound structure is pulled on each side by two forces of equal magnitude 6.00 104 N (Fig. P14.57). Find the length L of the steel rod if the elongations (L) of the two rods are equal. Use the values Ysteel = 2.0 1011 Pa and YCu = 1.1 1011 Pa. FIGURE P14.57arrow_forwardA horizontal, rigid bar of negligible weight is fixed against a vertical wall at one end and supported by a vertical string at the other end. The bar has a length of 50.0 cm and is used to support a hanging block of weight 400.0 N from a point 30.0 cm from the wall as shown in Figure P14.81. The string is made from a material with a tensile strength of 1.2 108 N/m2. Determine the largest diameter of the string for which it would still break. FIGURE P14.81arrow_forwardThe lintel of prestressed reinforced concrete in Figure P12.27 is 1.50 m long. The concrete encloses one steel reinforcing rod with cross-sectional area 1.50 cm2. The rod joins two strong end plates. The cross-sectional area of the concrete perpendicular to the rod is 50.0 cm2. Youngs modulus for the concrete is 30.0 109 N/m2. After the concrete cures and the original tension T1 in the rod is released, the concrete is to be under compressive stress 8.00 106 N/m2. (a) By what distance will the rod compress the concrete when the original tension in the rod is released? (b) What is the new tension T2 in the rod? (c) The rod will then be how much longer than its unstressed length? (d) When the concrete was poured, the rod should have been stretched by what extension distance from its unstressed length? (e) Find the required original tension T1 in the rod. Figure P12.27arrow_forward
- Consider a nanotube with a Youngs modulus of 2.130 1012 N/m2 that experiences a tensile stress of 5.3 1010 N/m2. Steel has a Youngs modulus of about 2.000 1011 Pa. How much stress would cause a piece of steel to experience the same strain as the nanotube?arrow_forwardA 100-N weight is attached to a free end of a metallic wire that hangs from the ceiling. When a second 100-N weight is added to the wire, it stretches 3.0 mm. The diameter and the length of the wire are 1.0 mm and2.0 m, respectively. What is Young’s modulus of the metal used to manufacture the wire?arrow_forwardIn Example 14.3, we found that one of the steel cables supporting an airplane at the Udvar-Hazy Center was under a tension of 9.30 103 N. Assume the cable has a diameter of 2.30 era and an initial length of 8.00 m before the plane is suspended on the cable. How much longer is the cable when the plane is suspended on it?arrow_forward
- Figure P12.38 shows a light truss formed from three struts lying in a plane and joined by three smooth hinge pins at their ends. The truss supports a downward force of F=1000N applied at the point B. The truss has negligible weight. The piers at A and C are smooth. (a) Given 1 = 30.0 and 2 = 45.0, find nA and nC. (b) One can show that the force any strut exerts on a pin must be directed along the length of the strut as a force of tension or compression. Use that fact to identify the directions of the forces that the struts exert on the pins joining them. Find the force of tension or of compression in each of the three bars. Figure P12.38arrow_forwardWhy is the following situation impossible? A worker in a factory pulls a cabinet across the floor using a rope as shown in Figure P12.36a. The rope make an angle = 37.0 with the floor and is tied h1 = 10.0 cm from the bottom of the cabinet. The uniform rectangular cabinet has height = 100 cm and width w = 60.0 cm, and it weighs 400 N. The cabinet slides with constant speed when a force F = 300 N is applied through the rope. The worker tires of walking backward. He fastens the rope to a point on the cabinet h2 = 65.0 cm off the floor and lays the rope over his shoulder so that he can walk forward and pull as shown in Figure P12.36b. In this way, the rope again makes an angle of = 37.0 with the horizontal and again has a tension of 300 N. Using this technique, the worker is able to slide the cabinet over a long distance on the floor without tiring. Figure P12.36 Problems 36 and 44.arrow_forwardWhat Is Static Equilibrium? Problems 13 are grouped. 1. C A ball is attached to a strong, lightweight rod (Fig. P14.1). The rod is supported by a horizontal pin near the top. The ball is at rest. Is the ball in static equilibrium? If not, why not? If so, which type of equilibrium is itstable, unstable, or neutral? Hint: What would happen if you displaced the ball slightly? FIGURE P14.1arrow_forward
- A steel rod has length 60.3 cm and radius 2.20 cm. An aluminum rod has length 20.0 cm and radius 2.20 cm. The rods are joined end to-end. When compressive forces of magnitude 5.40 are applied to the ends, by how much does the total length of the rods decrease? Young's modulus of steel is 200 * 10 ^ 11 * N / (m ^ 2) and Young's modulus of aluminum is 700 * 10 ^ 10 * N / (m ^ 2) marrow_forwardA horizontal aluminium rod 4.8 cm in diameter projects 5.3 cm from a wall. A 1200 kg object is suspended from the end of the rod. The shear modulus of aluminum is 3.0 x 1010 N/m2. Neglecting the rod's mass, find (a) the shear stress on the rod and (b) the vertical deflection of the end of the rod.arrow_forwardA hollow circular shaft has an external diameter of 120 mm and the internal External diameter. If the stress at inside of the shaft is 36 MPa, due to a torque T applied, find me, the maximum shear stress, and the angle of twist per unit length. Take G=85 MPa. 36 N/mm2 Q 90 mm 90 mm 120 mm SS The 120 mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY