Consider a double-paned window consisting of two panes of glass, each with a thickness of 0.500 cm and an area of 0.725 m 2 , separated by a layer of air with a thickness of 1.75 cm. The temperature on one side of the window is 0.00 °C; the temperature on the other side is 20.0°C. In addition, note that the thermal conductivity of glass is roughly 36 times greater than that of air. (a) Approximate the heat transfer through this window by ignoring the glass. That is, calculate the heat flow per second through 1.75 cm of air with a temperature difference of 20.0 C°. (The exact result for the complete window is 19.1 J/s.) (b) Use the approximate heat flow found in part (a) to find an approximate temperature difference across each pane of glass. (The exact result is 0 .157C°.)
Consider a double-paned window consisting of two panes of glass, each with a thickness of 0.500 cm and an area of 0.725 m 2 , separated by a layer of air with a thickness of 1.75 cm. The temperature on one side of the window is 0.00 °C; the temperature on the other side is 20.0°C. In addition, note that the thermal conductivity of glass is roughly 36 times greater than that of air. (a) Approximate the heat transfer through this window by ignoring the glass. That is, calculate the heat flow per second through 1.75 cm of air with a temperature difference of 20.0 C°. (The exact result for the complete window is 19.1 J/s.) (b) Use the approximate heat flow found in part (a) to find an approximate temperature difference across each pane of glass. (The exact result is 0 .157C°.)
Consider a double-paned window consisting of two panes of glass, each with a thickness of 0.500 cm and an area of 0.725 m2, separated by a layer of air with a thickness of 1.75 cm. The temperature on one side of the window is 0.00 °C; the temperature on the other side is 20.0°C. In addition, note that the thermal conductivity of glass is roughly 36 times greater than that of air. (a) Approximate the heat transfer through this window by ignoring the glass. That is, calculate the heat flow per second through 1.75 cm of air with a temperature difference of 20.0 C°. (The exact result for the complete window is 19.1 J/s.) (b) Use the approximate heat flow found in part (a) to find an approximate temperature difference across each pane of glass. (The exact result is 0 .157C°.)
20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie
the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres
are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?
Chapter 16 Solutions
Physics, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (5th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.