
Concept explainers
(a)
Whether the wave move toward right or the left.
(a)

Answer to Problem 54AP
The wave does not move toward right or the left while the wave moves outward equally in all directions.
Explanation of Solution
Given info:
The given wave function is,
The standard form wave function for the standing wave is,
Here,
If
The wave moves outward equally in all directions because of the negative sign in
Conclusion:
Therefore, the wave does not move toward right or the left while the wave moves outward equally in all directions
(b)
The effect on its amplitude as it moves away from the source.
(b)

Answer to Problem 54AP
The amplitude of the wave will be decreased as it moves away from the source because amplitude is inversely proportional to the distance.
Explanation of Solution
Given info:
From equation (1), the given wave function is,
From equation (2), the standard form wave function for the standing wave is,
From equation (1) and (2), it is clear that the amplitude is inversely proportional to its distance from the center. The amplitude of the wave will be decreased as it moves away from the source because amplitude is inversely proportional to the distance.
Conclusion:
Therefore, the amplitude of the wave will be decreased as it moves away from the source because amplitude is inversely proportional to the distance
(c)
The effect on its speed as it moves away from the source.
(c)

Answer to Problem 54AP
The speed of the wave is constant as it moves away from the source.
Explanation of Solution
Given info:
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the speed of the wave is,
Here,
Substitute
The calculated value of the speed of the wave is equal to the speed of the wave in the water at
Conclusion:
Therefore, the speed of the wave is constant as it moves away from the source.
(d)
The effect on its frequency as it moves away from the source.
(d)

Answer to Problem 54AP
The frequency of the wave is constant as wave moves away from the source.
Explanation of Solution
Given info:
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the frequency of the wave is,
Here,
Substitute
The frequency of the wave is constant at
Conclusion:
Therefore, the frequency of the wave is constant as the wave moves away from the source.
(e)
The effect on its wavelength as it moves away from the source.
(e)

Answer to Problem 54AP
The wavelength of the wave is constant as wave moves away from the source.
Explanation of Solution
Given info:
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the wavelength of the wave is,
Here,
Substitute d
The wavelength of the wave is constant at
Conclusion:
Therefore, the wavelength of the wave is constant as the wave moves away from the source.
(f)
The effect of its power as it moves away from the source.
(f)

Answer to Problem 54AP
The power of the source and the net power of the wave at all distance as wave moves away from the source.
Explanation of Solution
Given info:
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the intensity of the wave is,
Here,
Substitute d
Formula to calculate the power of the source and the net power of the wave at all distance is,
Here,
Substitute
Thus, the power of the source and the net power of the wave at all distance will be same because the wave moves outward equally in all directions
Conclusion:
Therefore, the power of the source and the net power of the wave at all distance as the wave moves away from the source.
(e)
The effect of its intensity as it moves away from the source.
(e)

Answer to Problem 54AP
The intensity of the source and the intensity of the wave at all distance as wave moves away from the source.
Explanation of Solution
Given info:
The given wave function is,
The standard form wave function for the standing wave is,
The intensity of the wave is,
The intensity of the wave follows the inverse square law at
Substitute
Thus, the intensity of the source and the intensity of the wave are same as the wave moves away from the source because the wave moves outward equally in all directions.
Conclusion:
Therefore, the intensity of the source and the intensity of the wave are same as the wave moves away from the source.
Want to see more full solutions like this?
Chapter 16 Solutions
Physics for Scientists and Engineers with Modern Physics
- The rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forwardGive a more general expression for the magnitude of the torque τ. Rewrite the answer found in Part A in terms of the magnitude of the magnetic dipole moment of the current loop m. Define the angle between the vector perpendicular to the plane of the coil and the magnetic field to be ϕ, noting that this angle is the complement of angle θ in Part A. Give your answer in terms of the magnetic moment mm, magnetic field B, and ϕ.arrow_forwardCalculate the electric and magnetic energy densities at thesurface of a 3-mm diameter copper wire carrying a 15-A current. The resistivity ofcopper is 1.68×10-8 Ω.m.Prob. 18, page 806, Ans: uE= 5.6 10-15 J/m3 uB= 1.6 J/m3arrow_forward
- A 15.8-mW laser puts out a narrow beam 2.0 mm in diameter.Suppose that the beam is in free space. What is the rms value of E in the beam? What isthe rms value of B in the beam?Prob. 28, page 834. Ans: Erms= 1380 V/m, Brms =4.59×10-6 Tarrow_forwardA 4.5 cm tall object is placed 26 cm in front of a sphericalmirror. It is desired to produce a virtual image that is upright and 3.5 cm tall.(a) What type of mirror should be used, convex, or concave?(b) Where is the image located?(c) What is the focal length of the mirror?(d) What is the radius of curvature of the mirror?Prob. 25, page 861. Ans: (a) convex, (b) di= -20.2 cm, i.e. 20.2 cm behind the mirror,(c) f= -90.55 cm, (d) r= -181.1 cm.arrow_forwardA series RCL circuit contains an inductor with inductance L=3.32 mH, and a generator whose rms voltage is 11.2 V. At a resonant frequencyof 1.25 kHz the average power delivered to the circuit is 26.9 W.(a) Find the value of the capacitance.(b) Find the value of the resistance.(c) What is the power factor of this circuit?Ans: C=4.89 μF, R=4.66 Ω, 1.arrow_forward
- A group of particles is traveling in a magnetic field of unknown magnitude and direction. You observe that a proton moving at 1.70 km/s in the +x-direction experiences a force of 2.06×10−16 N in the +y-direction, and an electron moving at 4.40 km/s in the −z-direction experiences a force of 8.10×10−16 N in the +y-direction. What is the magnitude of the magnetic force on an electron moving in the −y-direction at 3.70 km/s ? What is the direction of this the magnetic force? (in the xz-plane)arrow_forwardA particle with a charge of −5.20 nC is moving in a uniform magnetic field of B =−( 1.22 T )k^. The magnetic force on the particle is measured to be F=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the x component of the velocity of the particle.arrow_forwardIs it possible for average velocity to be negative?a. Yes, in cases when the net displacement is negative.b. Yes, if the body keeps changing its direction during motion.c. No, average velocity describes only magnitude and not the direction of motion.d. No, average velocity describes only the magnitude in the positive direction of motion.arrow_forward
- Tutorial Exercise An air-filled spherical capacitor is constructed with an inner-shell radius of 6.95 cm and an outer-shell radius of 14.5 cm. (a) Calculate the capacitance of the device. (b) What potential difference between the spheres results in a 4.00-μC charge on the capacitor? Part 1 of 4 - Conceptualize Since the separation between the inner and outer shells is much larger than a typical electronic capacitor with separation on the order of 0.1 mm and capacitance in the microfarad range, we expect the capacitance of this spherical configuration to be on the order of picofarads. The potential difference should be sufficiently low to avoid sparking through the air that separates the shells. Part 2 of 4 - Categorize We will calculate the capacitance from the equation for a spherical shell capacitor. We will then calculate the voltage found from Q = CAV.arrow_forwardI need help figuring out how to do part 2 with the information given in part 1 and putting it in to the simulation. ( trying to match the velocity graph from the paper onto the simulation to find the applied force graph) Using this simulation https://phet.colorado.edu/sims/cheerpj/forces-1d/latest/forces-1d.html?simulation=forces-1d.arrow_forwardI need help running the simulation to get the result needed.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





