(a)
Interpretation:
For the given each of the electrocyclic reactions, the product formed should be determined.
Concept introduction:
- Electrocyclic reaction is a concerted cyclization reaction of conjugated polyenes (π-system), in which one π-bond is converted into an σ-bond and remaining π-bonds shift their positions. Thereby the newly formed σ-bond connects the two ends of π-system to form a ring.
- The mechanism of the ring formation in the Electrocyclic reaction is drawn by using arrows representing the forming σ-bond and the shifting of π-bonds in the π-system of a polyene.
- The reaction conditions (thermal or photochemical) controls the product in such a way that the rotation for end lobes (ring closure) of the HOMO of conjugated (π-system) polyene.
- According to Woodward-Hoffmann rule for thermal and photochemical Electrocyclic reactions,
π-systems | Thermal | Photochemical |
6- π-electrons | Disrotatory | Conrotatory |
8- π-electrons | Conrotatory | Disrotatory |
To determine: the major product formed for each of the given electrocyclic reactions.
(b)
Interpretation:
For the given each of the electrocyclic reactions, the product formed should be determined.
Concept introduction:
- Electrocyclic reaction is a concerted cyclization reaction of conjugated polyenes (π-system), in which one π-bond is converted into an σ-bond and remaining π-bonds shift their positions. Thereby the newly formed σ-bond connects the two ends of π-system to form a ring.
- The mechanism of the ring formation in the Electrocyclic reaction is drawn by using arrows representing the forming σ-bond and the shifting of π-bonds in the π-system of a polyene.
- The reaction conditions (thermal or photochemical) controls the product in such a way that the rotation for end lobes (ring closure) of the HOMO of conjugated (π-system) polyene.
- According to Woodward-Hoffmann rule for thermal and photochemical Electrocyclic reactions,
π-systems | Thermal | Photochemical |
6- π-electrons | Disrotatory | Conrotatory |
8- π-electrons | Conrotatory | Disrotatory |
To determine: the major product formed for each of the given electrocyclic reactions.
(c)
Interpretation:
For the given each of the electrocyclic reactions, the product formed should be determined.
Concept introduction:
- Electrocyclic reaction is a concerted cyclization reaction of conjugated polyenes (π-system), in which one π-bond is converted into an σ-bond and remaining π-bonds shift their positions. Thereby the newly formed σ-bond connects the two ends of π-system to form a ring.
- The mechanism of the ring formation in the Electrocyclic reaction is drawn by using arrows representing the forming σ-bond and the shifting of π-bonds in the π-system of a polyene.
- The reaction conditions (thermal or photochemical) controls the product in such a way that the rotation for end lobes (ring closure) of the HOMO of conjugated (π-system) polyene.
- According to Woodward-Hoffmann rule for thermal and photochemical Electrocyclic reactions,
π-systems | Thermal | Photochemical |
6- π-electrons | Disrotatory | Conrotatory |
8- π-electrons | Conrotatory | Disrotatory |
To determine: the major product formed for each of the given electrocyclic reactions.
(d)
Interpretation:
For the given each of the electrocyclic reactions, the product formed should be determined.
Concept introduction:
- Electrocyclic reaction is a concerted cyclization reaction of conjugated polyenes (π-system), in which one π-bond is converted into an σ-bond and remaining π-bonds shift their positions. Thereby the newly formed σ-bond connects the two ends of π-system to form a ring.
- The mechanism of the ring formation in the Electrocyclic reaction is drawn by using arrows representing the forming σ-bond and the shifting of π-bonds in the π-system of a polyene.
- The reaction conditions (thermal or photochemical) controls the product in such a way that the rotation for end lobes (ring closure) of the HOMO of conjugated (π-system) polyene.
- According to Woodward-Hoffmann rule for thermal and photochemical Electrocyclic reactions,
π-systems | Thermal | Photochemical |
6- π-electrons | Disrotatory | Conrotatory |
8- π-electrons | Conrotatory | Disrotatory |
To determine: the major product formed for each of the given electrocyclic reactions.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 16 Solutions
ORGANIC CHEMISTRY-NEXTGEN+BOX (2 SEM.)
- 2. 200 LOD For an unknown compound with a molecular ion of 101 m/z: a. Use the molecular ion to propose at least two molecular formulas. (show your work) b. What is the DU for each of your possible formulas? (show your work) C. Solve the structure and assign each of the following spectra. 8 6 4 2 (ppm) 150 100 50 ō (ppm) 4000 3000 2000 1500 1000 500 HAVENUMBERI-11arrow_forwardComplete the spectroscopy with structurearrow_forwardComplete the spectroscopy with structurearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)