Concept explainers
Find the member end moments and reactions for the frames.
Answer to Problem 31P
The reaction at point A
The end moment at the member
Explanation of Solution
Fixed end moment:
Formula to calculate the relative stiffness for fixed support
Formula to calculate the fixed moment for point load with equal length are
Formula to calculate the fixed moment for point load with unequal length are
Formula to calculate the fixed moment for UDL is
Formula to calculate the fixed moment for UVL are
Formula to calculate the fixed moment for deflection is
Calculation:
Consider the elastic modulus E of the frame is constant.
Show the free body diagram of the entire frame as in Figure 1.
Refer Figure 1,
Calculate the relative stiffness
Calculate the relative stiffness
Calculate the distribution factor
Substitute
Calculate the distribution factor
Substitute
Calculate the distribution factor
Substitute
Check for sum of distribution factor as below:
Substitute
Hence, OK.
Calculate the distribution factor
Substitute
Calculate the distribution factor
Substitute
Check for sum of distribution factor as below:
Substitute
Hence, OK.
Calculate the distribution factor
Substitute
Calculate the distribution factor
Substitute
Check for sum of distribution factor as below:
Substitute
Hence, OK.
Calculate the distribution factor
Substitute
Calculate the distribution factor
Substitute
Calculate the distribution factor
Substitute
Check for sum of distribution factor as below:
Substitute
Hence, OK.
Show the translation
Write the expression to calculate the Fixed-end moment of the member.
Assume the Fixed-end moment of the members AC, CA, BD and DB as
Write the expression to calculate the Fixed-end moment of the member.
Assume the Fixed-end moment of the members CE, EC, DF and FD as
Show the calculation of
Show the free body diagram of the frame with unknown reaction
Consider member EC:
Calculate the horizontal reaction at the joint C by taking moment about point E.
Calculate the horizontal reaction at joint E by resolving the horizontal equilibrium.
Consider member FD:
Calculate the horizontal reaction at the joint D by taking moment about point F.
Calculate the horizontal reaction at joint F by resolving the horizontal equilibrium.
Calculate the reaction
Show the free body diagram of the frame with unknown reaction
Consider member AC:
Calculate the horizontal reaction at the joint A by taking moment about point C.
Calculate the horizontal reaction at joint C by resolving the horizontal equilibrium.
Consider member BD:
Calculate the horizontal reaction at the joint B by taking moment about point D.
Calculate the horizontal reaction at joint D by resolving the horizontal equilibrium.
Calculate the reaction
Show the translation
Write the expression to calculate the Fixed-end moment of the member.
Assume the Fixed-end moment of the members CE, EC, DF and FD as
Show the calculation of
Show the free body diagram of the frame with unknown reaction
Consider member EC:
Calculate the horizontal reaction at the joint C by taking moment about point E.
Calculate the horizontal reaction at joint E by resolving the horizontal equilibrium.
Consider member FD:
Calculate the horizontal reaction at the joint D by taking moment about point F.
Calculate the horizontal reaction at joint F by resolving the horizontal equilibrium.
Calculate the reaction
Show the free body diagram of the frame with unknown reaction
Consider member AC:
Calculate the horizontal reaction at the joint A by taking moment about point C.
Calculate the horizontal reaction at joint C by resolving the horizontal equilibrium.
Consider member BD:
Calculate the horizontal reaction at the joint B by taking moment about point D.
Calculate the horizontal reaction at joint D by resolving the horizontal equilibrium.
Calculate the reaction
Write the equation by superimposing the horizontal forces at joints C,
Write the equation by superimposing the horizontal forces at joints E,
Calculate the value of
Calculate the actual member end moments of the member AC and BD:
Substitute
Calculate the actual member end moments of the member CA and DB:
Substitute
Calculate the actual member end moments of the member CD and DC:
Substitute
Calculate the actual member end moments of the member CE and DF:
Substitute
Calculate the actual member end moments of the member EC and FD:
Substitute
Calculate the actual member end moments of the member EC and FD:
Substitute
Show the section free body diagram of the member as in Figure 8.
Consider member EF:
Calculate the vertical reaction at the joint E by taking moment about point F.
Calculate the vertical reaction at joint F by resolving the horizontal equilibrium.
Consider member CD:
Calculate the vertical reaction at the joint C by taking moment about point D.
Calculate the vertical reaction at joint D by resolving the horizontal equilibrium.
Calculate the reaction at joint A using the relation:
Calculate the reaction at joint B using the relation:
Consider member AC:
Calculate the horizontal reaction at the joint A by taking moment about point C.
Consider member BD:
Calculate the horizontal reaction at the joint B by taking moment about point D.
Show the reactions of the frame as in Figure 9.
Want to see more full solutions like this?
Chapter 16 Solutions
Structural Analysis, 5th Edition
- A load of P = 114 kN is supported by a structure consisting of rigid bar ABC, two identical solid bronze [E = 116 GPa] rods, and a solid steel [E=192 GPa] rod, as shown. The bronze rods (1) each have a diameter of 19 mm and they are symmetrically positioned relative to the center rod (2) and the applied load P. Steel rod (2) has a diameter of 28 mm. All bars are unstressed before the load P is applied; however, there is a 1.5-mm clearance in the bolted connection at B. Assume L₁ = 2.4m and L2 = 1.5 m. Determine: (a) the normal stresses in the bronze and steel rods (01,02). (b) the downward deflection of rigid bar ABC. (1) Answers: (a)σ1 = (b) vi L2 (2) (1) B P mm. Li MPa, 02 MPa. =arrow_forwardA high-density polvethelene (HD PE I9 - 780 MPaiy = 0.46 rod has a diameter of 70 mm before load Pis applied. In order to maintain certain clearances, the diameter of the rod must not exceed 72 mm when loaded. What is the largest permissible compressive load P that can be applied to the HDPE rod?arrow_forwardCurrent Attempt in Progress A load of P 117 kN is supported by a structure consisting of rigid bar ABC, two identical solid bronze [E= 83 GPa] rods, and a solid steel [E 182 GPa] rod, as shown. The bronze rods (1) each have a diameter of 20 mm and they are symmetrically positioned relative to the center rod (2) and the applied load P. Steel rod (2) has a diameter of 26 mm. All bars are unstressed before the load Pis applied; however, there is a 3.4-mm clearance in the bolted connection at B. Assume L₁ = 3.3 m and L2 = 1.6 m. Determine: (a) the normal stresses in the bronze and steel rods (01, 02). (b) the downward deflection v of rigid bar ABC. (1) Answers: L2 (2) (1) B P (a) σ = (b) y = eTextbook and Media Save for Later MPa. MPa, 02 = mm. Attempts: 0 of 5 used Submit Answerarrow_forward
- A vinyl [E= 2.60 GPa; v = 0.43] block with width b = 50 mm, depth d = 100 mm, and height h = 270 mm rests on a smooth rigid base. A load P is applied to a rigid plate that rests on top of the block. Calculate the change in the depth dimension d of the block after a load of P = 120 kN is applied. Rigid plate Answer: Ad= Width b Depth d Height Rigid base mmarrow_forwardAn aluminum [E = 11900 ksi] control rod with a circular cross section must not stretch more than 0.24 in. when the tension in the rod is 1980 lb. If the maximum allowable normal stress in the rod is 12.1 ksi, determine: (a) the smallest diameter d that can be used for the rod. (b) the corresponding maximum length L of the rod. Answers: (a) d = i (b) L = i in. in.arrow_forwardView Policies Current Attempt in Progress At an axial load of 19 kN, a 45-mm-wide by 15-mm-thick polyimide polymer bar elongates 2.7 mm while the bar width contracts 0.19 mm. The bar is 220 mm long. At the 19-kN load, the stress in the polymer bar is less than its proportional limit. Determine (a) the modulus of elasticity. (b) Poisson's ratio. (c) the change in the bar thickness. Answers: (a) E= (b) v= (c) Athickness eTextbook and Media Save for Later GPa mm Attempts: 0 of 5 used Submit Answerarrow_forward
- In the two-member assembly shown, find the axial force in rod (1) if P = 11.3 kips. 8 ft 12 ft O 4.45 kips 8.53 kips 9.38 kips O 7.24 kips 6.76 kips B 16 ftarrow_forwardFigure 3 shows the numerical solution of the advection equation for a scalar u along x at threeconsecutive timesteps.Provide an explanation what conditions and numerical setup could explain the curves. Identifywhich of the three curves is the first, second and third timestep.arrow_forwardRequired information For the beam shown, use only singularity functions. V₁-350 lbf, V2 35 lbf/in, V3-12 in, and V4 = 6 in. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. V1 V2 0 ZA V3 V4 V4 What is the value of the reaction force and the moment at O? The reaction force O is | The moment at point O is 650 lbf. lbf inarrow_forward
- Could you please draw the bending moment diagram for the shown frame. Please draw three, 1 for only the vertical load, 1 for the horizontal and 1 for combined.arrow_forwardProblem 2 Determine the force in each member of the truss shown by the method of joints. [10 marks] E 10 ft 5k 12 ft B 10 k 10 k 12 ftarrow_forwardV A W What is the degree of positioning (PG) of a cuboid body between two guiding surfaces? (Assumption: gravity ignored) U B W U C W U V V V PG = 0 PG = 1 PG = 2 D W PG = 3 Uarrow_forward