Find the reaction and plot the shear and bending moment diagram.
![Check Mark](/static/check-mark.png)
Explanation of Solution
Fixed end moment:
Formula to calculate the relative stiffness for fixed support
Formula to calculate the fixed moment for point load with equal length are
Formula to calculate the fixed moment for point load with equal length are
Formula to calculate the fixed moment for point load with unequal length are
Formula to calculate the fixed moment for UDL is
Calculation:
Consider the flexural rigidity EI of the beam is constant.
Show the free body diagram of the entire beam as in Figure 1.
Refer Figure 1,
Calculate the relative stiffness
Calculate the relative stiffness
In the above beam, only joint C is free to rotate. Hence, calculate the distribution factor at joint C.
Calculate the distribution factor
Substitute
Calculate the distribution factor
Substitute
Check for sum of distribution factor:
Substitute 0.5 for
Hence, OK.
Calculate the fixed end moment for AC.
Calculate the fixed end moment for CA.
Calculate the fixed end moment for CE.
Calculate the fixed end moment for EC.
Show the calculation of final moments using moment distribution method as in Table 1.
Consider the member AC of the beam:
Show the free body diagram of the member AC as in Figure 2.
Calculate the vertical reaction at the left end of the joint C by taking moment about point A.
Calculate the horizontal reaction at point A by resolving the horizontal equilibrium.
Calculate the vertical reaction at point A by resolving the vertical equilibrium.
Consider the member CE of the beam:
Show the free body diagram of the member CE as in Figure 3.
Calculate the vertical reaction at the right end of the joint C by taking moment about point E.
Calculate the horizontal reaction at point E by resolving the horizontal equilibrium.
Calculate the vertical reaction at point E by resolving the vertical equilibrium.
Calculate the total reaction at point C.
Substitute
Show the reaction of the beam in Figure 4.
Refer Figure 4,
Shear diagram:
Point A:
Point B:
Point C:
Point D:
Point E:
Plot the shear force diagram of the beam as in Figure 5.
Refer Figure 4,
Bending moment diagram:
Point A:
Point B:
Point C:
Point D:
Point E:
Plot the bending moment diagram of the beam as in Figure 6.
Want to see more full solutions like this?
Chapter 16 Solutions
Structural Analysis, 5th Edition
- 4. Draw a free body diagram of the loading and forces. Solve for the reaction A at the wall support. Check your answer using the summation of forces. 10k A w=2 k/ft 40ft 10ft 5karrow_forward4. Draw a free body diagram of the loading and forces. Solve for the reaction A at the wall support. Check your answer using the summation of forces. 10k A w=2 k/ft 40ft 10ft 5karrow_forwardA reinforced concrete beam with b=300mm, h=670mm,and d=600 mm, having a span of 7.3 m, can be considered as a fully fixed at the left support and simply supported at the right end. It is reinforced for positive bending with 8-16 and for negative bending with 4816 plus 418. Calculate the collapse load using the plastic hinge method. (20%)arrow_forward
- A reinforced concrete beam with b=300mm, h=670mm,and d=600 mm, having a span of 7.3 m, can be considered as a fully fixed at the left support and simply supported at the right end. It is reinforced for positive bending with 8-16 and for negative bending with 4816 plus 418. Calculate the collapse load using the plastic hinge method.arrow_forwardCalculate the collapse load (P) for the two fixed ended beam shown below. Use equilibrium method P 2 m 4 m L=6 marrow_forwardPlease use virtual work/ force method as I am struggling with that particular concept.arrow_forward
- The anchor from Part A can also fail in shear in the circular head, as shown (Figure 3). What is the minimum thickness tt required for the head to support the allowed load PallowPallow = 15 kNkN if the material fails in shear at τfailτfail = 30 MPaMPa ? Use a factor of safety F.S.F.S. = 2.2.arrow_forwardFind three sites on the www related to reinforced concrete (other than thoselinked to the Syllabus). For each site, provide a written description of the sitecontent and the site’s URL.arrow_forwardVisit the course web page on Canvas. Find the document where the advantagesand disadvantages of reinforced concrete are listed. Provide at least three additionaladvantages and three additional disadvantages. Justify your answer.arrow_forward
- Max. Flow rate from catchment area=0.25 m³/s drain to road (one side road) having roof section with longitudinal slope %1, n=0.016, cross-section slope %1, 24 m width of road, 0.15 m curb stone. Gutter data: 7 cm high of water. 1-What is the capacity (or Max. flow rate) for this road? 2- With 0.5 m3 /s is it flood? 3-Whate is the clear zone in case Q=0.5 m³/s?arrow_forwardEstimate Q inlet for curb inlet in sump, If y=5 cm, L=0.5 m and %13 clogging.arrow_forward3020,220 30 30m 120 Design inlet system for the road in figure below. C=0.93, i=65 mm/hr, Gutter data: y max.=9 cm, n=0.016, k=0.38, slope %1, Z=40, (space-bar-2 cm). Estimate inlet type. elevation in points (a-82.1, b=82 m), in point t rain water depth in point f>3 cm in u turn >5.5 cm. Sag point in S. Drow curbstone DATE DATE 5 100 Median strip 10 %1 d 72arrow_forward
![Text book image](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)