The Physics of Everyday Phenomena
The Physics of Everyday Phenomena
8th Edition
ISBN: 9780073513904
Author: W. Thomas Griffith, Juliet Brosing Professor
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 16, Problem 2SP

(a)

To determine

The position of first bright fringe appears on either side of the central fringe.

(a)

Expert Solution
Check Mark

Answer to Problem 2SP

The position of first bright fringe is 36mm away from the center at each side.

Explanation of Solution

Given info: Wavelength of the light is 640nm, order of bright fringe is 1, the distance of screen from slits is 1.8m and spacing between adjacent slits is 0.032mm.

Write an expression for condition of maxima.

y=nλDd

Here,

y is the distance of nth bright fringe from center

n is the order of the bright fringe

D is the screen’s distance from slit

λ is the wavelength

d is the slit separation

Substitute 580nm for λ, 1 for n, 1.3m for D and 0.044mm for d to find y.

y=(1)((640nm)(1m109nm))(1.8m)(0.032mm)(1m103mm)=36×103m=(36×103m)(1mm103m)=36mm

Thus, the position of first bright fringe is 36mm away from the center at each side of the central maxima.

Conclusion:

Thus, position of first bright fringe is 36mm away from the center at each side of the central fringe.

(b)

To determine

The position of second bright fringe on either side of the central fringe.

(b)

Expert Solution
Check Mark

Answer to Problem 2SP

The position of second bright fringe is 72mm away from the center at each side of the central fringe.

Explanation of Solution

Given info: Wavelength of the light is 640nm, order of bright fringe is 2, the distance of screen from slits is 1.8m and spacing between adjacent slits is 0.032mm.

Write an expression for condition of maxima.

y=nλDd

Here,

y is the distance of nth bright fringe from center

n is the order of the bright fringe

D is the screen’s distance from slit

λ is the wavelength

d is the slit separation

Substitute 640nm for λ, 2 for n, 1.8m for D and 0.032mm for d to find y.

y=(2)((640nm)(1m109nm))(1.8m)(0.032mm)(1m103mm)=72×103m=(72×103m)(1mm103m)=72mm

Thus, the position of second bright fringe is 72mm away from the center at each side of the central fringe.

Conclusion:

The position of second bright fringe is 72mm away from the center at each side of the central fringe.

(c)

To determine

The position of first dark bright fringe appeared on either side of the central fringe.

(c)

Expert Solution
Check Mark

Answer to Problem 2SP

The position of first dark fringe is 54mm away from the center at each side of the central fringe.

Explanation of Solution

Given info: Wavelength of the light is 640nm, order of dark fringe is 1, the distance of screen from slits is 1.8m and spacing between adjacent slits is 0.032mm.

Write an expression for condition of minima.

y=(n+12)λDd

Here,

y is the distance of nth dark fringe from center

n is the order of the bright fringe

D is the screen’s distance from slit

λ is the wavelength

d is the slit separation

Substitute 640nm for λ, 1 for n, 1.8m for D and 0.032mm for d to find y.

y=(1+12)((640nm)(1m109nm))(1.8m)(0.032mm)(1m103mm)=54×103m=(54×103m)(1mm103m)=54mm

Thus, the position of first dark fringe is 54mm away from the center at each side.

Conclusion:

Thus, position of first dark fringe is 54mm away from the center at each side.

(d)

To determine

Sketch the diffraction pattern showing the position of the seven central fringes and mark the position of the fringes.

(d)

Expert Solution
Check Mark

Answer to Problem 2SP

The diffraction pattern is given in figure 1.

Explanation of Solution

Write an expression for condition of minima.

y=(n+12)λDd

Here,

y is the distance of nth dark fringe from center

n is the order of the dark fringe

D is the screen’s distance from slit

λ is the wavelength

d is the slit separation

Substitute 640nm for λ, 2 for n, 1.8m for D and 0.032mm for d to find y.

y=(1+12)((640nm)(1m109nm))(1.8m)(0.032mm)(1m103mm)=90×103m=(90×103m)(1mm103m)=90mm

Thus, the position of second dark fringe is 90mm away from the center at each side.

Write an expression for condition of maxima.

y=nλDd

Here,

y is the distance of nth bright fringe from center

n is the order of the bright fringe

D is the screen’s distance from slit

λ is the wavelength

d is the slit separation

Substitute 640nm for λ, 3 for n, 1.8m for D and 0.032mm for d to find y.

y=(3)((640nm)(1m109nm))(1.8m)(0.032mm)(1m103mm)=108×103m=(108×103m)(1mm103m)=108mm

Thus, the position of third bright fringe is 108mm away from the center at each side of the central fringe.

Following figure gives the diffraction pattern.

The Physics of Everyday Phenomena, Chapter 16, Problem 2SP

Figure 1

Here, the first, second and third order bright fringes will appear at distance of 36mm, 72mm and 108mm from center respectively at each side of the central maxima. The dark fringes of order 1 and 2 will form distances 54mm and 90mm respectively.

Conclusion:

The diffraction pattern is given in figure 1.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON