The Physics of Everyday Phenomena
The Physics of Everyday Phenomena
8th Edition
ISBN: 9780073513904
Author: W. Thomas Griffith, Juliet Brosing Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16, Problem 1SP

(a)

To determine

The frequencies associated with violet and red end of the spectrum.

(a)

Expert Solution
Check Mark

Answer to Problem 1SP

The frequency associated with violet light is 7.89×1014Hz and the frequency associated with red light is 4.0×1014Hz.

Explanation of Solution

Given info:

The wavelength associated with violet light is 380nm and the wavelength associated with red light is 750nm

Write an expression to calculate the frequency of the wave.

f=cλ (1)

Here,

f is the frequency

c is the speed of light

λ is the wavelength

For violet light:

Substitute 380nm for λ and 3.00×108m/s for c in equation (1) to find f.

f=3.00×108m/s(380nm)(1m109nm)=7.89×1014Hz

For red light:

Substitute 750nm for λ and 3.00×108m/s for c in equation (1) to find f.

f=3.00×108m/s(750nm)(1m109nm)=4.0×1014Hz

Thus, the frequency associated with violet light is 7.89×1014Hz and the frequency associated with red light is 4.0×1014Hz.

Conclusion:

The frequency associated with violet light is 7.89×1014Hz and the frequency associated with red light is 4.0×1014Hz.

(b)

To determine

The approximate speed of light in glass.

(b)

Expert Solution
Check Mark

Answer to Problem 1SP

The approximate speed of light in glass is 2.00×108m/s.

Explanation of Solution

Given info:

The refractive index of glass is 1.5.

Write an expression for speed of light in glass.

v=cn

Here,

v is the speed of light in glass

c is the speed of light in vacuum

n is the refractive index

Substitute 3.00×108m/s for c and 1.5 for n to find v.

v=3.00×108m/s1.5=2.00×108m/s

Thus, approximate speed of light in glass is 2.00×108m/s.

Conclusion:

The approximate speed of light in glass is 2.00×108m/s.

(c)

To determine

The wavelength’s of two ends of visible spectrum in glass.

(c)

Expert Solution
Check Mark

Answer to Problem 1SP

The wavelength associated with violet light is 150nm and the wavelength associated with red light is 300nm.

Explanation of Solution

Write an expression to calculate the wavelength of the wave.

λ=vf (2)

For violet light:

Substitute 7.89×1014Hz for f and 2.00×108m/s for v in equation (2) to find λ.

f=2.00×108m/s7.89×1014Hz=150nm

For red light:

Substitute 7.89×1014Hz for f and 2.00×108m/s for v in equation (2) to find λ.

f=2.00×108m/s4.0×1014Hz=300nm

Thus, the wavelength associated with violet light is 150nm and the wavelength associated with red light is 300nm.

Conclusion:

The wavelength associated with violet light is 150nm and the wavelength associated with red light is 300nm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. What are the key steps involved in the fabrication of a semiconductor device. 2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer with the pattern below. Describe the process you would use. High Aspect Ratio Trenches Undoped Si Wafer P-doped Si 3. You would like to deposit material within a high aspect ratio trench. What approach would you use and why? 4. A person is setting up a small clean room space to carry out an outreach activity to educate high school students about patterning using photolithography. They obtained a positive photoresist, a used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full resist gets developed, and they are unable to transfer the pattern onto the resist. Help them troubleshoot and find out why pattern of transfer has not been successful. 5. You are given a composite…
Two complex values are  z1=8 + 8i,  z2=15 + 7 i.  z1∗  and  z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗   Please show all steps
An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin⁡(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave.  What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all steps
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY