
Concept explainers
Find the member end moments and reactions for the frames.

Answer to Problem 29P
The reaction at point A
The end moment at the member
Explanation of Solution
Fixed end moment:
Formula to calculate the relative stiffness for fixed support
Formula to calculate the fixed moment for point load with equal length are
Formula to calculate the fixed moment for point load with unequal length are
Formula to calculate the fixed moment for UDL is
Formula to calculate the fixed moment for UVL are
Formula to calculate the fixed moment for deflection is
Calculation:
Consider the flexural rigidity EI of the frame is constant.
Show the free body diagram of the entire frame as in Figure 1.
Refer Figure 1,
Calculate the length of the member AC:
Calculate the relative stiffness
Calculate the relative stiffness
Calculate the relative stiffness
Calculate the relative stiffness
Calculate the distribution factor
Substitute
Calculate the distribution factor
Substitute
Check for sum of distribution factor as below:
Substitute 0.556 for
Hence, OK.
Calculate the distribution factor
Substitute
Calculate the distribution factor
Substitute
Check for sum of distribution factor as below:
Substitute 0.571 for
Hence, OK.
Calculate the fixed end moment for AC.
Calculate the fixed end moment for CA.
Calculate the fixed end moment for CD.
Calculate the fixed end moment for DC.
Calculate the fixed end moment for DB and BD.
Show the calculation of
Show the free body diagram of the member AC, CD and DB for side-sway prevented as in Figure 2.
Consider member CD:
Calculate the vertical reaction at the joint C by taking moment about point D.
Calculate the vertical reaction at joint D by resolving the horizontal equilibrium.
Consider member AC
Calculate vertical reaction at joint A using the relation:
Calculate horizontal reaction at joint A by taking moment about point C.
Calculate the horizontal reaction at joint C by resolving the horizontal equilibrium.
Consider member DB:
Calculate vertical reaction at joint B:
Calculate horizontal reaction at joint B by taking moment about point D.
Calculate the horizontal reaction at joint D by resolving the horizontal equilibrium.
Show the unknown load R as in Figure 3.
Calculate the reaction R:
Show the arbitrary translation as in Figure 4.
Calculate the relative translation
Calculate the relative translation
Calculate the relative translation
Calculate the fixed end moment for AC and CA.
Substitute
Calculate the fixed end moment for CD and DC.
Substitute
Calculate the fixed end moment for BD and DB.
Substitute
Assume the Fixed-end moment at AC, and CA as
Calculate the value of
Substitute
Calculate the fixed end moment of CD and DC.
Substitute 266.7 for
Calculate the fixed end moment of BD and DB.
Substitute 266.7 for
Show the calculation of
Show the free body diagram of the member AC, CD and DB for side-sway permitted as in Figure 5.
Consider member CD:
Calculate the vertical reaction at the joint C by taking moment about point D.
Calculate the vertical reaction at joint D by resolving the horizontal equilibrium.
Consider member AC
Calculate vertical reaction at joint A using the relation:
Calculate horizontal reaction at joint A by taking moment about point C
Calculate the horizontal reaction at joint C by resolving the horizontal equilibrium.
Consider member DB:
Calculate vertical reaction at joint B:
Calculate horizontal reaction at joint B by taking moment about point D
Calculate the horizontal reaction at joint D by resolving the horizontal equilibrium.
Show the unknown load Q as in Figure 6.
Calculate the reaction Q:
Calculate the actual member end moments of the member AC:
Substitute
Calculate the actual member end moments of the member CA:
Substitute
Calculate the actual member end moments of the member CD:
Substitute
Calculate the actual member end moments of the member DC:
Substitute
Calculate the actual member end moments of the member DB:
Substitute
Calculate the actual member end moments of the member BD:
Substitute
Show the section free body diagram of the member AC, CD, and DB as in Figure 5.
Consider member CD:
Calculate the vertical reaction at the joint C by taking moment about point D.
Calculate the vertical reaction at joint D by resolving the horizontal equilibrium.
Consider member AC
Calculate vertical reaction at joint A:
Calculate horizontal reaction at joint A by taking moment about point C.
Calculate the horizontal reaction at joint C by resolving the horizontal equilibrium.
Consider member DB:
Calculate vertical reaction at joint B using the relation:
Calculate horizontal reaction at joint B.
Show the reactions of the frame as in Figure 8.
Want to see more full solutions like this?
Chapter 16 Solutions
Structural Analysis (MindTap Course List)
- Calculate: a) effective stresses at points A and B before the placement of foundations 1 and 2, b)the increase of pressure at point A as a result of the placement of the circular foundation 1, c) theincrease of pressure at point B as a result of the placement of the strip foundation 2.arrow_forwardConsider the total head-loss in the system forthis flow is 18.56 ft (head-losses in first and second pipe are 13.83 ft and 4.73 ftrespectively). Please show numerical values for EGL/HGL at the beginning/end/intermediatechange point. (Point distribution: elevation determination 5 points, EGL, HGL lines 4points)arrow_forwardAs shown in the figure below, a 1.5 m × 1.5 m footing is carrying a 400 kN load. P Depth (m) 0.0 1.0 2.0 Df Groundwater table (Yw = 9.81 kN/m³) 3.5 Yt = 16.5 kN/m³ E = 9,000 kPa Sandy soil Ysat 17.5 kN/m³ E = 15,000 kPa 6.0 Stiff Clay (OCR = 2) Bedrock Ysat 18.0 kN/m³ eo = 0.8 Cc = 0.15, Cr = 0.02 Eu =40,000 kPa (a) Estimate the immediate settlement beneath the center of the footing. Assuming that Poisson's ratios of sand and soft clay are 0.3 and 0.5, respectively. Use numerical integration approach. For the calculations, use layers (below the bottom of the footing) of thicknesses: 1 m; 1.5 m, and 2.5 m. (b) Determine the primary consolidation settlement beneath the center of the footing. (c) Redo Part (b) if OCR=1.1. Note: Use the 2:1 method to determine the stress increase below the footing. For parts (b) and (c), use the one-dimensional consolidation theory.arrow_forward
- Assuming that the whole DMV is only handled by one queue and one server and both the arrival rate (20 customer per hour) and the service rate (30 customers per hour) random variables are Markovian. (a) What is the mean queue length? [3 pts] (b) Percentage of Idle time of the server? [3 pts] (c) Average number in the queue? [3 pts] (d) Average number in the system? [3 pts] (e) The average wait time in the queue? [3 pts] (f) The average wait time in the system? [3 pts] (g) The probability that no one is in the system. [2 pts]arrow_forwardA toll booth on the Thruway experiences an average inter-arrival time of 3 minutes between each vehicle. As an operator, you want to have a mean queue length of at most 2 vehicles. What mean service rate (per hour) will the toll booth need to provide?arrow_forwardA freeway is to be designed at a location on level terrain for an annual average daily traffic (AADT) of 45,000 vehicles per day. For a conversion of AADT to an annual hourly volume, assume that the K-factor is 0.10 (i.e., the 30th highest hourly volume of the year). In addition, 55% of the peak-hour traffic volume is expected to travel in the peak direction (D = 0.55). This freeway segment will be for regular commuters. Other estimates include: PHF of 0.95, free-flow speed of 65 mph, and 20% trucks of the traffic stream. In order to determine the number of lanes required to provide at least LOS C, answer the following questions. (a) Determine Free Flow Speed (FFS) [4 pts] (b) Find the directional design-hour volume (DDHV) [4 pts] (c) Find fHv [4 pts] (d) Determine the number of lanes required. [4 pts] (e) Check the expected LOS for 2-directional lanes on this freeway segment. [4 pts]arrow_forward
- Observing a deterministic queue in 3 hours, suppose vehicles arrive at a rate of 500 vph for the first hour and 150 vph for the second and third hours. The service rate is 150 vph for the first two hours. The server can discharge 500 vehicles for the last hour. (a) What is the queue length after 30 minutes? [4 pts] (b) What is the maximum queue length? [4 pts] (c) When does the maximum queue happen? [4 pts] (d) What is the total delay? [4 pts] (e) Describe how the queue grows and discharges in this queuing process. [4 pts]arrow_forwardPlease explain step by step and show the formula usedarrow_forwardFind the increase of pressure at points A and B due to a loading q=400 kPa placed on the givenfoundation.arrow_forward
- The 4-story building has a floor dead load D = 80 psf, floor live load , L = 100 psf, roof dead load Dr = 40 psf, roof live load Lr = 60 psf, and snow load S = 50 psf. The length of columns is 18 ft and the column ends are pins (Lx = Ly = 18 ft). 1) Determine Pu on interior columns B2-4 and B2-1 2) Use Table 4-1a (pg 4-12 to 4-24) in AISC to select the lightest W shapes for these columns 3) Use Table 4-4 (pg 4-69 to 4-83) in AISC to select lightest square HSS shape for the columns.arrow_forward1:08 Il LTE Individual Assignment CEQ 31... CIVIL ENGINEERING ROANTICLO (Earthworks Quantities) (Due Date: Friday, 28/03/2025) Done Thumbi Irrigation Scheme in Mzimba district is under threat of flooding. In order to mitigate against the problem, authorities have decided to construct a flood protection bund (Dyke). Figure 1 is a cross section of a 300m long proposed dyke; together with its foundation (key). Survey data for the proposed site of the dyke are presented in Table 1. Table 2 provides swelling and shrinkage factors for the fill material that has been proposed. The dyke dimensions that are given are for a compacted fill. (1) Assume you are in the design office, use both the Simpson Rule and Trapezoidal Rule to compute the total volume of earthworks required. (Assume both the dyke and the key will use the same material). (2) If you are a Contractor, how many days will it take to finish hauling the computed earthworks using 3 tippers of 12m³ each? Make appropriate assumptions.…arrow_forwardThumbi Irrigation Scheme in Mzimba district is under threat of flooding. In order to mitigate against the problem, authorities have decided to construct a flood protection bund (Dyke). Figure 1 is a cross section of a 300m long proposed dyke; together with its foundation (key). Survey data for the proposed site of the dyke are presented in Table 1. Table 2 provides swelling and shrinkage factors for the fill material that has been proposed. The dyke dimensions that are given are for a compacted fill. (1) Assume you are in the design office, use both the Simpson Rule and Trapezoidal Rule to compute the total volume of earthworks required. (Assume both the dyke and the key will use the same material). (2) If you are a Contractor, how many days will it take to finish hauling the computed earthworks using 3 tippers of 12m³ each? Make appropriate assumptions. DIKE CROSS SECTION OGL KEY (FOUNDATION) 2m 1m 2m 8m Figure 1: Cross section of Dyke and its foundation 1.5m from highest OGL 0.5m…arrow_forward
