Concept explainers
Whether the given culvert will operate under inlet or outlet control for the given conditions.
Answer to Problem 20P
The given culvert is acceptable and inlet control governs.
Explanation of Solution
Given:
The diameter of concrete circular box is
The angle of inclination of flared walls is
The
The design headwater elevation is
Elevation of stream bed at face of invert is
Tail water depth is
Approximate length of culvert is
Slope of stream is
The value of
The value of
Formula used:
The flow rate per width is given by,
Here,
The required headwater is given by,
Here,
The design headwater depth is given by,
Here,
The formula for fall is given by,
The culvert invert elevation is given by,
The depth from outlet invert to hydraulic line is given by,
Here,
The outlet water elevation is given by,
Here,
The required outlet headwater elevation is given by,
Here,
Calculation:
The flow rate per width is calculated as,
Substitute
Consider Figure 16.17, "Headwater Depth for Concrete Pipe Culverts with Inlet Control" from the book "Traffic and Highway Engineering", for a depth of
The required headwater is calculated as,
Substitute
The design headwater depth is calculated as,
Substitute
The fall is calculated as,
Substitute
The culvert invert elevation is calculated as,
Substitute
The depth from outlet invert to hydraulic line is calculated as,
Substitute
The tail water is not greater so take
The outlet water elevation is calculated as,
Substitute
For circular culvert with
The required outlet headwater elevation is calculated as,
Substitute
The required outlet headwater elevation is less than the design headwater design so the given culvert is acceptable and inlet control governs.
Conclusion:
Therefore, the given culvert is acceptable and the inlet control governs.
Want to see more full solutions like this?
Chapter 16 Solutions
Traffic And Highway Engineering
- Send me the solution to the following question based on the source and I do not want the solution from artificial intelligencearrow_forwardQ5: Find the force in each member of truss in figure below. 10 kN -2 m- 4 m 2 m 5 kN 4 m 45arrow_forwardSend me the solution to the following question based on the source and I do not want the solution from artificial intelligencearrow_forward
- Send me the solution to the following question based on the source and I do not want the solution from artificial intelligencearrow_forwardSend me the solution to the following question based on the source and I do not want the solution from artificial intelligencearrow_forwardSTRUCTURES I Homework #1: Force Systems Name: TA: PROBLEM 1 Determine the horizontal and vertical components of the force in the cable shown. PROBLEM 2 The horizontal component of force F is 30 lb. What is the magnitude of force F? 6 10 4 4 F = 600lbs F = ?arrow_forward
- 18:02 28% 50 同 こ 【Recommend】 Easily add text in PDF 3 m 35 kN 4m 84 kN +3m EA = constant E = 200 GPa A T5 4m Add 1,200 mm² Find Horizontal and vertical displacement at B 4 kN m m- B Determine Vertical displacement at C Determine the displacement or point B of the steel beam shown in Take E200 GPa, I = 500(106) mm4. 5 m 2/ 40 kN B 12 kN/m 4 m. 12 kN/m 3 m B 10 m- E constant = 70 GPa I 554 (10) mm Determine Displacement at C ΙΣΤ Edit Annotate Fill & Sign Convert Allarrow_forwardIn a floor of an industrial building, boilers are supported symmetrically on secondary beams A and B, which have a centre-to-centre distance of 5 m and which are in turn supported by the main beam, which has a span of 9 m (see Fig. 10.62). Design the main beam given the following data:arrow_forwardS₂ S S,-40 S,-100 P S,=40 40 80 80 40arrow_forward
- The bolted connection shown is connected with M20 bolts in standard holes. The plate material is A36 steel. Find the allowable (ASD) tensile strength of each plate. 50 65 65 65 13 40 65 40 13arrow_forwardA 3.048 m long column (Fy = 483 MPa) carries an axial compression load of 5000 kN dead load. The column is braced at mid-height to strengthen the column in the weak direction. Use LRFD. Which of the following most nearly gives the nominal compressive strength? Show solution and drawingsarrow_forwardWhen an open-ended square tube is placed vertically into a pool of water, the water rises 4 mm up inside of the tube. A) Determine the inner length of the square tube. A solid cylindrical rod is then placed vertically down the center of the open-ended square tube and the water rises an additional 4 mm up the tube. B) Determine the diameter of the solid rod that was inserted. 0.073 @ 20N m T C s = = o .arrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,