College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 20P
A proton and an alpha particle (charge = 2e, mass = 6.64 × 10−27 kg) are initially at rest, separated by 4.00 × 10−15 m. (a) If they are both released simultaneously, explain why you can’t find their velocities at infinity using only conservation of energy. (b) What other conservation law can be applied in this case? (c) Find the speeds of the proton and alpha particle, respectively, at infinity.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
(a) An positron (electron with a positive charge) starts at rest and accelerates through an electric field established by a set of parallel plates with a potential difference of 35 V. What is the speed of the positron the instant before it hits the negative plate?(e = 1.6 × 10-19 C, melectron = 9.1 × 10-31 kg) (b) Instead of hitting the negative plate, the positron, travelling East, escapes the parallel plates through a small hole and enters a magnetic field of 0.75 T directed downward. What will be the magnetic force (magnitude and direction) on the charge?(c) Once the positron has entered the magnetic field, it is in circular motion. What is the radius of the positron's circular path?
Suppose an electron is accelerated from rest through a potential difference of 100,000 volts. Determine the electron's final kinetic energy, speed, and momentum (a) ignoring relativistic effects and (b) including relativistic effects.
An atom of beryllium (m = 8.00 u) splits into two atoms of
helium (m = 4.00 u) with the release of 92.2 keV of energy.
If the original beryllium atom is at rest, find the kinetic
energies and speeds of the two helium atoms.
Chapter 16 Solutions
College Physics:
Ch. 16.1 - If an electron is released from rest in a uniform...Ch. 16.1 - If a negatively charged particle is placed at rest...Ch. 16.1 - Figure 16.3 is a graph of an electric potential as...Ch. 16.1 - If a negatively charged particle is placed at...Ch. 16.2 - Consider a collection of charges in a given region...Ch. 16.2 - A spherical balloon contains a positively charged...Ch. 16.3 - An electron initially at rest accelerates through...Ch. 16.6 - A capacitor is designed so that one plate is large...Ch. 16.7 - A parallel-plate capacitor is disconnected from a...Ch. 16.8 - A fully charged parallel-plate capacitor remains...
Ch. 16.8 - Consider a parallel-plate capacitor with a...Ch. 16 - A proton is released from rest in a uniform...Ch. 16 - An electron is released from rest in a uniform...Ch. 16 - Figure CQ16.3 shows equipotential contours in the...Ch. 16 - Rank the potential energies of the four systems of...Ch. 16 - A parallel-plate capacitor with capacitance C0...Ch. 16 - An air-filled parallel-plate capacitor with...Ch. 16 - Choose the words that make each statement correct,...Ch. 16 - Why is it important to avoid sharp edges or points...Ch. 16 - Explain why, under static conditions, all points...Ch. 16 - If you are given three different capacitors C1,...Ch. 16 - (a) Why is it dangerous to touch the terminals of...Ch. 16 - The plates of a capacitor are connected to a...Ch. 16 - Rank the electric potentials at the four points...Ch. 16 - If you were asked to design a capacitor in which...Ch. 16 - Is it always possible to reduce a combination of...Ch. 16 - Explain why a dielectric increases the maximum...Ch. 16 - A uniform electric field of magnitude 375 N/C...Ch. 16 - A proton is released from rest in a uniform...Ch. 16 - A potential difference of 90.0 mV exists between...Ch. 16 - Cathode ray tubes (CRTs) used in old-style...Ch. 16 - A constant electric field accelerates a proton...Ch. 16 - A point charge q = +40.0 C moves from A to B...Ch. 16 - Oppositely charged parallel plates are separated...Ch. 16 - (a) Find the potential difference VB required to...Ch. 16 - An ionized oxygen molecule (O+2) at point A has...Ch. 16 - On planet Tehar, the free-fall acceleration is the...Ch. 16 - An electron is at the origin, (a) Calculate the...Ch. 16 - The two charges in Figure P16.12 are separated by...Ch. 16 - (a) Find the electric potential, taking zero at...Ch. 16 - Three charges are situated at corners of a...Ch. 16 - Two point charges Q1 = +5.00 nC and Q2 = 3.00 nC...Ch. 16 - Three identical point charges each of charge q are...Ch. 16 - The three charges in Figure P16.17 are at the...Ch. 16 - A positive point charge q = +2.50 nC is located at...Ch. 16 - A proton is located at the origin, and a second...Ch. 16 - A proton and an alpha particle (charge = 2e, mass...Ch. 16 - A tiny sphere of mass 8.00 g and charge 2.80 nC is...Ch. 16 - The metal sphere of a small Van de Graaff...Ch. 16 - In Rutherfords famous scattering experiments that...Ch. 16 - Four point charges each haring charge Q are...Ch. 16 - Calculate the speed of (a) an electron and (b) a...Ch. 16 - An electric field does 1.50 103 eV of work on a...Ch. 16 - An alpha particle, which has charge 3.20 1019 C,...Ch. 16 - In the classical model of a hydrogen atom, an...Ch. 16 - Consider the Earth and a cloud layer 8.0 102 m...Ch. 16 - (a) When a 9.00-V battery is connected to the...Ch. 16 - An air-filled parallel-plate capacitor has plates...Ch. 16 - Air breaks down and conducts charge as a spark if...Ch. 16 - An air-filled capacitor consists of two parallel...Ch. 16 - A 1-megabit computer memory chip contains many...Ch. 16 - a parallel-plate capacitor with area 0.200 m2 and...Ch. 16 - A small object with a mass of 350. g carries a...Ch. 16 - Given a 2.50-F capacitor, a 6.25-F capacitor, and...Ch. 16 - Two capacitors, C1 = 5.00 F and C2 = 12.0 F, are...Ch. 16 - Find (a) the equivalent capacitance of the...Ch. 16 - Two capacitors give an equivalent capacitance of...Ch. 16 - For the system of capacitors shown in Figure...Ch. 16 - Consider the combination of capacitors in Figure...Ch. 16 - Find the charge on each of the capacitors in...Ch. 16 - Three capacitors are connected to a battery as...Ch. 16 - A 25.0-F capacitor and a 40.0-F capacitor are...Ch. 16 - (a) Find the equivalent capacitance between points...Ch. 16 - A 1.00-F capacitor is charged by being connected...Ch. 16 - Four capacitors are connected as shown in Figure...Ch. 16 - A 12.0 V battery is connected to a 4.50 F...Ch. 16 - Two capacitors, C1 = 18.0 F and C2 = 36.0 F, are...Ch. 16 - A parallel-plate capacitor has capacitance 3.00 F....Ch. 16 - Each plate of a 5.00 F capacitor stores 60.0 C of...Ch. 16 - The voltage across an air-filled parallel-plate...Ch. 16 - (a) How much charge can be placed on a capacitor...Ch. 16 - Determine (a) the capacitance and (b) the maximum...Ch. 16 - A parallel-plate capacitor has plates of area A =...Ch. 16 - A model of a red blood cell portrays the cell as a...Ch. 16 - When a potential difference of 150. V is applied...Ch. 16 - Three parallel-plate capacitors are constructed,...Ch. 16 - For the system of four capacitors shown in Figure...Ch. 16 - A parallel-plate capacitor with a plate separation...Ch. 16 - Two capacitors give an equivalent capacitance of...Ch. 16 - A parallel-plate capacitor is constructed using a...Ch. 16 - Two charges of 1.0 C and 2.0 C are 0.50 m apart at...Ch. 16 - Find the equivalent capacitance of the group of...Ch. 16 - A spherical capacitor consists of a spherical...Ch. 16 - The immediate cause of many deaths is ventricular...Ch. 16 - When a certain air-filled parallel-plate capacitor...Ch. 16 - Capacitors C1 = 6.0 F and C2 = 2.0 F are charged...Ch. 16 - Two positive charges each of charge q are fixed on...Ch. 16 - Metal sphere A of radius 12.0 cm carries 6.00 C of...Ch. 16 - An electron is fired at a speed v0 = 5.6 106 m/s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A charged particle moves along a straight line in a uniform electric field E with a speed v. If the motion and the electric field are both in the x direction, (a) show that the magnitude of the acceleration of the charge q is given by a=dvdt=qEm(1v2c2)3/2 (b) Discuss the significance of the dependence of the acceleration on the speed. (c) If the particle starts from rest at x = 0 at t = 0, find the speed of the particle and its position after a time t has elapsed. Comment on the limiting values of v and x as t .arrow_forwardIn this problem, we will try to understand why chemical reactions cannot power the Sun, but nuclear reactions can. The energy scale of chemical reactions is a few eV, where eV is a unit of energy called an electron volt. 1 eV = 1.602 x 10-19 J. A typical chemical reaction involves an energy change of ~0.1 to 10 eV. In contrast, a nuclear reaction typically involves a change in energy of order a few MeV (mega electron volts; a factor of a million larger). Suppose that the Sun has a constant luminosity throughout its life, equal to its current luminosity of L⊙=3.827×1026J/s . Suppose also that the Sun is made entirely of hydrogen (or just protons, since the mass of the electron is about 2000 times smaller and is negligible in comparison). If every pair of two protons in the Sun undergo a one-time chemical reaction that nets ~1 eV of energy, how long would it take (in years) to expend all the available chemical energy?arrow_forwardIf an electron is accelerated from rest through a potential difference of 9.9 kV, what is its resulting speed? (e = 1.60 x 10-19 C, k= 1/4ne0 = 8.99 x 109 N. m2/C2, mel = 9.11 x 10-31 kg) %3D O 5.9 x 107 m/s 2.9 x 107 m/s O 4.9 x 10 m/s 3.9 x 10 m/s None of the given choices.arrow_forward
- Problem 17: An evacuated tube uses a potential difference of AV= 0.56 kV to accelerate electrons, which then hit a copper plate and produce X-rays. . Part (a) Write an expression for the non-relativistic speed of these electrons v in terms of e, AV, and m, assuming the electrons start from rest. v = AV 7 9 HOME a b d. 4 5 e h 1 j k P END m S V VO BACKSPACE CLEAR DEL Submit Hint Feedback I give up! Hints: 0% deduction per hint. Hints remaining: 2 Feedback: 1% deduction per feedback. Part (b) Calculate the non-relativistic speed of these electrons v in m/s.arrow_forwardA negative hydrogen ion (1 proton and 2 electrons) at rest is at a 0V potential.The hydrogen ion is placed in an electrostatic accelerator with variable potential. The central terminal of the accelerator has a potential of 2 million volts. Determine the kinetic energy acquired by the ion when it is subjected to this potential difference. (Express the results in joules and electron volts)arrow_forwardA newly discovered light positively charged particle has a mass of m and charge q. Suppose it moves within the vicinity of an extremely heavy (fixed in place) particle with a positive charge Q and mass M. When the light particle is xi distance from the heavy particle, it is moving directly away from the heavy particle with a speed of vi. a) What is the lighter particle's speed when it is xf away from the heavy particle? (Consider the Newtonian Gravitation acting between the two charged particles. Ignore the effects of external forces)arrow_forward
- A newly discovered light positively charged particle has a mass of m and charge q. Suppose it moves within the vicinity of an extremely heavy (fixed in place) particle with a positive charge Q and mass M. When the light particle is xi distance from the heavy particle, it is moving directly away from the heavy particle with a speed of vi. a) What is the lighter particle's speed when it is xf away from the heavy particle? (Consider the Newtonian Gravitation acting between the two charged particles. Ignore the effects of external forces)arrow_forwardPlz helparrow_forwardA newly discovered light positively charged particle has a mass of m and charge q. Suppose it moves within the vicinity of an extremely heavy (fixed in place) particle with a positive charge Q and mass M. When the light particle is xi distance from the heavy particle, it is moving directly away from the heavy particle with a speed of vi. a) What is the lighter particle's speed when it is xf away from the heavy particle? (Consider the Newtonian Gravitation acting between the two charged particles. Ignore the effects of external forces)... (disregard current answers if wrong)arrow_forward
- An electron is accelerated from rest through a potential difference of 3.00 kV. What is its final velocity? The mass of an electron is 9.109×10-31 kg.arrow_forwardAn electron has a speed of 0.643c. Through what potential difference would the electron need to be accelerated (starting from rest) in order to reach this speed? (c = 3.00 × 108 m/s, e = 1.60 × 10-19 C, mel = 9.11 × 10-31 kg)arrow_forwardA constant electric field accelerates a proton from rest through a distance of 1.20 m to a speed of 1.53 ✕ 105 m/s. The mass and charge of a proton are mp = 1.67 ✕ 10−27 kg and qp = e = 1.60 ✕ 10−19 C.) (a) Find the change in the proton's kinetic energy (in J). J (b)Find the change in the system's electric potential energy (in J). J (c) Calculate the magnitude of the electric field (in N/C). N/Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY