Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
a. Assuming g is integrable and a, b, c, and d are constants,
b. The spherical equation φ = π/2, the cylindrical equation z = 0, and the rectangular equation z = 0 all describe the same set of points.
c. Changing the order of
d. The transformation T: x = v, y = −u maps a square in the uv-plane to a triangle in the xy-plane.
a.

Whether the statement “Assuming g is integrable and a, b, c and d are constants,
Answer to Problem 1RE
The statement is false.
Explanation of Solution
Theorem used:
Fubini’s Theorem:
Let f be continuous on the rectangular region
The double integral of f over R may be evaluated by either of two iterated integrals:
Description:
The integrable function is g and the constants are a, b, c and d.
Use the Fubini’s theorem to prove or disprove the given statement.
The integral expression
Consider the example of the volume of a solid bounded by the surface
Simplify the left hand side of the equation as follows.
On further simplification,
That is,
Simplify the Right hand side of the equation as follows.
On further simplification,
From the equations (1) and (2), the evaluated values are not the same.
Hence, the statement is false.
b.

Whether the statement “The spherical equation
Answer to Problem 1RE
The statement is true.
Explanation of Solution
The set of sphere for
Here,
The set of cylinder for
Thereby the set
Thus, the spherical equation
Hence, the statement is true.
c.

Whether the statement “Changing the order of integration in
Answer to Problem 1RE
The statement is false.
Explanation of Solution
Theorem used:
Let f be continuous over the region,
where g, h, G and H are continuous functions. Then f is integrable over D and the triple integral is evaluated as the iterated integral:
Description:
Consider the example,
Use the above theorem to change the order of integration in the above example.
It is observed that the change in order of integration does not alter the integrand.
Hence, the statement is false.
d.

Whether the statement “The transformation
Answer to Problem 1RE
The statement is false.
Explanation of Solution
The given transformations is
Take the image of S in the uv-plane, where
The uv-plane is bounded by the vertices
From
That is,
Substitute
Therefore, xy-plane traces out the segment from
From
That is,
Substitute
Therefore, xy-plane traces out the segment from
From
That is,
Substitute
Therefore, xy-plane traces out the segment from
From
That is,
Substitute
Therefore, xy-plane traces out the segment from
Thus, the image of region in xy-plane is a square with vertices
Hence, it does not maps into a triangle and thereby the statement is false.
Want to see more full solutions like this?
Chapter 16 Solutions
Calculus, Early Transcendentals, Single Variable Loose-Leaf Edition Plus MyLab Math with Pearson eText - 18-Week Access Card Package
Additional Math Textbook Solutions
Elementary Statistics: Picturing the World (7th Edition)
Elementary Statistics (13th Edition)
Algebra and Trigonometry (6th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
- Use a graphing utility to find the point of intersection, if any, of the graphs of the functions. Round your result to three decimal places. (Enter NONE in any unused answer blanks.) y = 100e0.01x (x, y) = y = 11,250 ×arrow_forward5. For the function y-x³-3x²-1, use derivatives to: (a) determine the intervals of increase and decrease. (b) determine the local (relative) maxima and minima. (e) determine the intervals of concavity. (d) determine the points of inflection. (e) sketch the graph with the above information indicated on the graph.arrow_forwardCan you solve this 2 question numerical methodarrow_forward
- 1. Estimate the area under the graph of f(x)-25-x from x=0 to x=5 using 5 approximating rectangles Using: (A) right endpoints. (B) left endpoints.arrow_forward9. Use fundamental theorem of calculus to find the derivative d a) *dt sin(x) b)(x)√1-2 dtarrow_forward3. Evaluate the definite integral: a) √66x²+8dx b) x dx c) f*(2e* - 2)dx d) √√9-x² e) (2-5x)dx f) cos(x)dx 8)²₁₂√4-x2 h) f7dx i) f² 6xdx j) ²₂(4x+3)dxarrow_forward
- 2. Consider the integral √(2x+1)dx (a) Find the Riemann sum for this integral using right endpoints and n-4. (b) Find the Riemann sum for this same integral, using left endpoints and n=4arrow_forwardProblem 11 (a) A tank is discharging water through an orifice at a depth of T meter below the surface of the water whose area is A m². The following are the values of a for the corresponding values of A: A 1.257 1.390 x 1.50 1.65 1.520 1.650 1.809 1.962 2.123 2.295 2.462|2.650 1.80 1.95 2.10 2.25 2.40 2.55 2.70 2.85 Using the formula -3.0 (0.018)T = dx. calculate T, the time in seconds for the level of the water to drop from 3.0 m to 1.5 m above the orifice. (b) The velocity of a train which starts from rest is given by the fol- lowing table, the time being reckoned in minutes from the start and the speed in km/hour: | † (minutes) |2|4 6 8 10 12 14 16 18 20 v (km/hr) 16 28.8 40 46.4 51.2 32.0 17.6 8 3.2 0 Estimate approximately the total distance ran in 20 minutes.arrow_forwardX Solve numerically: = 0,95 In xarrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningElementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning




