Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
a. Assuming g is integrable and a, b, c, and d are constants,
b. The spherical equation φ = π/2, the cylindrical equation z = 0, and the rectangular equation z = 0 all describe the same set of points.
c. Changing the order of
d. The transformation T: x = v, y = −u maps a square in the uv-plane to a triangle in the xy-plane.
a.

Whether the statement “Assuming g is integrable and a, b, c and d are constants,
Answer to Problem 1RE
The statement is false.
Explanation of Solution
Theorem used:
Fubini’s Theorem:
Let f be continuous on the rectangular region
The double integral of f over R may be evaluated by either of two iterated integrals:
Description:
The integrable function is g and the constants are a, b, c and d.
Use the Fubini’s theorem to prove or disprove the given statement.
The integral expression
Consider the example of the volume of a solid bounded by the surface
Simplify the left hand side of the equation as follows.
On further simplification,
That is,
Simplify the Right hand side of the equation as follows.
On further simplification,
From the equations (1) and (2), the evaluated values are not the same.
Hence, the statement is false.
b.

Whether the statement “The spherical equation
Answer to Problem 1RE
The statement is true.
Explanation of Solution
The set of sphere for
Here,
The set of cylinder for
Thereby the set
Thus, the spherical equation
Hence, the statement is true.
c.

Whether the statement “Changing the order of integration in
Answer to Problem 1RE
The statement is false.
Explanation of Solution
Theorem used:
Let f be continuous over the region,
where g, h, G and H are continuous functions. Then f is integrable over D and the triple integral is evaluated as the iterated integral:
Description:
Consider the example,
Use the above theorem to change the order of integration in the above example.
It is observed that the change in order of integration does not alter the integrand.
Hence, the statement is false.
d.

Whether the statement “The transformation
Answer to Problem 1RE
The statement is false.
Explanation of Solution
The given transformations is
Take the image of S in the uv-plane, where
The uv-plane is bounded by the vertices
From
That is,
Substitute
Therefore, xy-plane traces out the segment from
From
That is,
Substitute
Therefore, xy-plane traces out the segment from
From
That is,
Substitute
Therefore, xy-plane traces out the segment from
From
That is,
Substitute
Therefore, xy-plane traces out the segment from
Thus, the image of region in xy-plane is a square with vertices
Hence, it does not maps into a triangle and thereby the statement is false.
Want to see more full solutions like this?
Chapter 16 Solutions
CALCULUS: EARLY TRANSCENDENTALS (LCPO)
Additional Math Textbook Solutions
Elementary Statistics: Picturing the World (7th Edition)
Elementary Statistics (13th Edition)
Algebra and Trigonometry (6th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
- Let E be the region bounded cone z = √√/6 - (x² + y²) and the sphere z = x² + y² + z² . Provide an answer accurate to at least 4 significant digits. Find the volume of E. Triple Integral Spherical Coordinates Cutout of sphere is for visual purposes 0.8- 0.6 z 04 0.2- 0- -0.4 -0.2 04 0 0.2 0.2 x -0.2 04 -0.4 Note: The graph is an example. The scale and equation parameters may not be the same for your particular problem. Round your answer to 4 decimal places. Hint: Solve the cone equation for phi. * Oops - try again.arrow_forwardThe temperature at a point (x,y,z) of a solid E bounded by the coordinate planes and the plane 9.x+y+z = 1 is T(x, y, z) = (xy + 8z +20) degrees Celcius. Find the average temperature over the solid. (Answer to 4 decimal places). Average Value of a function using 3 variables z 1- y Hint: y = -a·x+1 * Oops - try again. xarrow_forwardFind the saddle pointsarrow_forward
- For the curve defined by r(t) = (e** cos(t), et sin(t)) find the unit tangent vector, unit normal vector, normal acceleration, and tangential acceleration at t = πT 3 T (1) N Ň (1) 133 | aN = 53 ar = = =arrow_forwardFind the tangential and normal components of the acceleration vector for the curve - F(t) = (2t, −3t³, −3+¹) at the point t = 1 - ā(1) = T + Ñ Give your answers to two decimal placesarrow_forwardFind the unit tangent vector to the curve defined by (t)=(-2t,-4t, √√49 - t²) at t = −6. T(−6) =arrow_forward
- An airplane flies due west at an airspeed of 428 mph. The wind blows in the direction of 41° south of west at 50 mph. What is the ground speed of the airplane? What is the bearing of the airplane? 428 mph 41° 50 mph a. The ground speed of the airplane is b. The bearing of the airplane is mph. south of west.arrow_forwardRylee's car is stuck in the mud. Roman and Shanice come along in a truck to help pull her out. They attach one end of a tow strap to the front of the car and the other end to the truck's trailer hitch, and the truck starts to pull. Meanwhile, Roman and Shanice get behind the car and push. The truck generates a horizontal force of 377 lb on the car. Roman and Shanice are pushing at a slight upward angle and generate a force of 119 lb on the car. These forces can be represented by vectors, as shown in the figure below. The angle between these vectors is 20.2°. Find the resultant force (the vector sum), then give its magnitude and its direction angle from the positive x-axis. 119 lb 20.2° 377 lb a. The resultant force is (Tip: omit degree notations from your answers; e.g. enter cos(45) instead of cos(45°)) b. It's magnitude is lb. c. It's angle from the positive x-axis isarrow_forwardFind a plane containing the point (3, -3, 1) and the line of intersection of the planes 2x + 3y - 3z = 14 and -3x - y + z = −21. The equation of the plane is:arrow_forward
- Determine whether the lines L₁ : F(t) = (−2, 3, −1)t + (0,2,-3) and L2 : ƒ(s) = (2, −3, 1)s + (−10, 17, -8) intersect. If they do, find the point of intersection. ● They intersect at the point They are skew lines They are parallel or equalarrow_forwardAnswer questions 2arrow_forwardHow does a fourier transform works?arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningElementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning




