EBK STRUCTURAL ANALYSIS
EBK STRUCTURAL ANALYSIS
5th Edition
ISBN: 9780100469105
Author: KASSIMALI
Publisher: YUZU
Question
Book Icon
Chapter 16, Problem 1P
To determine

Find the reaction and plot the shear and bending moment diagram.

Expert Solution & Answer
Check Mark

Explanation of Solution

Fixed end moment:

Formula to calculate the relative stiffness for fixed support IL and for roller support (34)(IL).

Formula to calculate the fixed moment for point load with equal length are PL8.

Formula to calculate the fixed moment for point load with equal length are PL8.

Formula to calculate the fixed moment for point load with unequal length are Pab2L2 and Pa2bL2.

Formula to calculate the fixed moment for UDL is WL212.

Calculation:

Consider the flexural rigidity EI of the beam is constant.

Show the free body diagram of the entire beam as in Figure 1.

EBK STRUCTURAL ANALYSIS, Chapter 16, Problem 1P , additional homework tip  1

Refer Figure 1,

Calculate the relative stiffness KCA for part CA of the beam:

KCA=I20ft+10ft=I30

Calculate the relative stiffness KCE for part CE of the beam:

KCE=I15ft+15ft=I30

In the above beam, only joint C is free to rotate. Hence, calculate the distribution factor at joint C.

Calculate the distribution factor DFCA for member AC of the beam.

DFCA=KCAKCA+KCE

Substitute I30 for KCA and I30 for KCE.

DFCA=I30I30+I30=0.5

Calculate the distribution factor DFCA for part CE of the beam.

DFCE=KCEKCA+KCE

Substitute I30 for KCA and I30 for KCE.

DFCE=I30I30+I30=0.5

Check for sum of distribution factor:

DFCE+DFCA=1

Substitute 0.5 for DFCE and 0.5 for DFCA.

0.5+0.5=1

Hence, OK.

Calculate the fixed end moment for AC.

FEMAC=18×20×102(30)2=40kft

Calculate the fixed end moment for CA.

FEMCA=18×202×10(30)2=80kft

Calculate the fixed end moment for CE.

FEMCE=10×308=37.5kft

Calculate the fixed end moment for EC.

FEMEC=10×308=37.5kft

Show the calculation of final moments using moment distribution method as in Table 1.

EBK STRUCTURAL ANALYSIS, Chapter 16, Problem 1P , additional homework tip  2

Consider the member AC of the beam:

Show the free body diagram of the member AC as in Figure 2.

EBK STRUCTURAL ANALYSIS, Chapter 16, Problem 1P , additional homework tip  3

Calculate the vertical reaction at the left end of the joint C by taking moment about point A.

+MA=0Cy,L(30)18×(20)+50.62558.75=0Cy,L(30)=368.125Cy,L=368.12530Cy,L=12.271k

Calculate the horizontal reaction at point A by resolving the horizontal equilibrium.

+Fx=0Ax=0

Calculate the vertical reaction at point A by resolving the vertical equilibrium.

+Fy=0Ay18+Cy,L=0Ay18+12.271=0Ay=5.729k

Consider the member CE of the beam:

Show the free body diagram of the member CE as in Figure 3.

EBK STRUCTURAL ANALYSIS, Chapter 16, Problem 1P , additional homework tip  4

Calculate the vertical reaction at the right end of the joint C by taking moment about point E.

+ME=0Cy,R(30)+10×(15)26.875+58.75=0Cy,R(30)=181.875Cy,R=181.87530Cy,R=6.063k

Calculate the horizontal reaction at point E by resolving the horizontal equilibrium.

+Fx=0Ex=0

Calculate the vertical reaction at point E by resolving the vertical equilibrium.

+Fy=0Ey10+Cy,R=0Ey10+6.063=0Ey=3.937k

Calculate the total reaction at point C.

Cy=Cy,R+Cy,L

Substitute 6.063k for Cy,R and 12.271k for Cy,L.

Cy=6.063+12.271=18.334k

Show the reaction of the beam in Figure 4.

EBK STRUCTURAL ANALYSIS, Chapter 16, Problem 1P , additional homework tip  5

Refer Figure 4,

Shear diagram:

Point A:

SA,L=0SA,R=5.729k

Point B:

SB=5.72918=12.271k

Point C:

SC,L=12.271kSC,R=12.271+18.334=6.063k

Point D:

SD,L=6.063kSD,R=6.06310=3.937k

Point E:

SE,L=3.937kSE,R=3.937k+3.937=0k

Plot the shear force diagram of the beam as in Figure 5.

EBK STRUCTURAL ANALYSIS, Chapter 16, Problem 1P , additional homework tip  6

Refer Figure 4,

Bending moment diagram:

Point A:

MA=50.625kft

Point B:

MB=50.625+(5.729×20)=63.955kft

Point C:

MC=58.75kft58.8kft

Point D:

MD=58.8+(6.063×15)=32.145k

Point E:

ME=26.875kft26.9kft

Plot the bending moment diagram of the beam as in Figure 6.

EBK STRUCTURAL ANALYSIS, Chapter 16, Problem 1P , additional homework tip  7

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(20 02 A concrete beam of rectangular cross-section (300 x 400) mm is Prestressed with wires located at (30) mm from the top of the beam .The wires are initially tensioned to 0-6 mm) diameter wires at (100) mm from the soffit of the beam and (5-6 mm) a stress of (900 N/mm²). Compute the percentage loss of stress in steel after transfer due to elastic deformation of concrete. Given: Es=200 x 103 N/mm², Ec = 25 x 10³ N/mm². 300 за 60000 400 100 546 2046
Reinforced Concrete Design First Monthly Exam 24/02/2 Q1. A simply supported rectangular beam (300 x 400) mm and span (12) m with live load of from the soffit of the beam. Compute the stresses at mid-span of beam for the following (5 kN/m). At the centre of the beam the prestressing force of (120) kN is located at (50 mm) conditions: (a) Prestress + self- weight of beam (initial stage). (b) Prestress + self- weight of beam + Live Load (service stage). 3:00 400 120 K * 12m 5kN/m. 120 KN
A driven pipe pile in clay is shown in Figure (1). The pipe has outside diameter of 406 mm, and wall thickness is 6.35 mm. a. calculate the net point bearing capacity. b. calculate the skin resistance (1) by using a method, (2) by using A method. e. Estimate the net allowable pile capacity. Use FS-4. Figure (1) 5 m Saturated clay 30 kN/m² Groundwater table y= 18 kN/m 5 m Clay C-30 kN/m2 y= 18 kN/m 20 m C Clay -100 kN/m² 19.6 kN/m
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Structural Analysis
    Civil Engineering
    ISBN:9781337630931
    Author:KASSIMALI, Aslam.
    Publisher:Cengage,
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,