
Concept explainers
(a)
To determine: The method of categorization of the sample as acidic or basic.
(a)

Answer to Problem 1DE
Solution: The method of categorization of the sample as acidic or basic is by using litmus paper.
Explanation of Solution
If the solution is acidic, it changes blue litmus paper into red and there is no change in color for red litmus paper.
If the solution is basic it changes red litmus paper into blue and there is no change in color for blue litmus paper.
The sample is categorized as acidic or basic by using litmus paper.
(b)
To determine: The method of categorization of the sample as weak acid or strong acid.
(b)

Answer to Problem 1DE
Solution: The method of categorization of the sample as weak acid or strong acid is titration.
Explanation of Solution
A strong acid and a weak acid can be differentiated by titrating them agianst a strong base like NaOH with the help of two acid-base indicators namely, methyl orange and phenolphthalein. The titre value is noted in both the cases.
When strong acid is titrated agianst a strong base, the same titre value is obtained for both the indicators. For tritration of weak acid and strong base, the color of indicator,methyl orange changes much earlier than the phenolphthalein and two different titre values are obtained.
Thus, the method of categorization of the sample as weak acid or strong acid is titration.
(c)
To determine: The value of
(c)

Answer to Problem 1DE
Solution: The value of
Explanation of Solution
The
The value of
Rearrange the above equation to calculate the value of
The value of
(d)
To determine: The method of separation of salt of weak acid.
(d)

Answer to Problem 1DE
Solution: The method of separation of salt of weak acid is by using the immiscible organic solvent and water.
Explanation of Solution
Weak acids being organic in nature are more soluble in organic solvent.
For the separation of sodium salt of weak acid, the titrated mixture is dissolved in the mixture of immiscible organic solvent and water.
The salt being ionic preferred to dissolved in aqueous layer and weak acid preferred to dissolve in organic layer.
The aqueous layer is separated by separating funnel.
The salt of weak acid is separated by using the immiscible organic solvent and water.
(e)
To determine: The strength of the base and the
(e)

Answer to Problem 1DE
Solution: The strength of the base and the
Explanation of Solution
The strength of a base is determined by comparing
If the value of
The
The value of
Rearrange the above equation to calculate the value of
The strength of the weak base is determined by using
Want to see more full solutions like this?
Chapter 16 Solutions
Chemistry: The Central Science (14th Edition)
- Hand written equations pleasearrow_forward> each pair of substrates below, choose the one that will react faster in a substitution reaction, assuming that: 1. the rate of substitution doesn't depend on nucleophile concentration and 2. the products are a roughly 50/50 mixture of enantiomers. Substrate A Substrate B Faster Rate X Ś CI (Choose one) (Choose one) CI Br Explanation Check Br (Choose one) © 2025 McGraw Hill LLC. All Rights Farrow_forwardNMR spectrum of ethyl acetate has signals whose chemical shifts are indicated below. Which hydrogen or set of hydrogens corresponds to the signal at 4.1 ppm? Select the single best answer. The H O HỌC—C—0—CH, CH, 2 A ethyl acetate H NMR: 1.3 ppm, 2.0 ppm, 4.1 ppm Check OA B OC ch B C Save For Later Submit Ass © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center |arrow_forward
- How many signals do you expect in the H NMR spectrum for this molecule? Br Br Write the answer below. Also, in each of the drawing areas below is a copy of the molecule, with Hs shown. In each copy, one of the H atoms is colored red. Highlight in red all other H atoms that would contribute to the same signal as the H already highlighted red Note for advanced students: In this question, any multiplet is counted as one signal. 1 Number of signals in the 'H NMR spectrum. For the molecule in the top drawing area, highlight in red any other H atoms that will contribute to the same signal as the H atom already highlighted red. If no other H atoms will contribute, check the box at right. Check For the molecule in the bottom drawing area, highlight in red any other H atoms that will contribute to the same signal as the H atom already highlighted red. If no other H atoms will contribute, check the box at right. O ✓ No additional Hs to color in top molecule ง No additional Hs to color in bottom…arrow_forwardin the kinetics experiment, what were the values calculated? Select all that apply.a) equilibrium constantb) pHc) order of reactiond) rate contstantarrow_forwardtrue or false, given that a 20.00 mL sample of NaOH took 24.15 mL of 0.141 M HCI to reach the endpoint in a titration, the concentration of the NaOH is 1.17 M.arrow_forward
- in the bromothymol blue experiment, pKa was measured. A closely related compound has a Ka of 2.10 x 10-5. What is the pKa?a) 7.1b) 4.7c) 2.0arrow_forwardcalculate the equilibrium concentration of H2 given that K= 0.017 at a constant temperature for this reaction. The inital concentration of HBr is 0.050 M.2HBr(g) ↔ H2(g) + Br2(g)a) 4.48 x 10-2 M b) 5.17 x 10-3 Mc) 1.03 x 10-2 Md) 1.70 x 10-2 Marrow_forwardtrue or falsegiven these two equilibria with their equilibrium constants:H2(g) + CI2(l) ↔ 2HCI(g) K= 0.006 CI2(l) ↔ CI2(g) K= 0.30The equilibrium contstant for the following reaction is 1.8H2(g) + CI2 ↔ 2HCI(g)arrow_forward
- I2(g) + CI2(g) ↔ 2ICIK for this reaction is 81.9. Find the equilibrium concentration of I2 if the inital concentration of I2 and CI2 are 0.010 Marrow_forwardtrue or false,the equilibrium constant for this reaction is 0.50.PCI5(g) ↔ PCI3(g) + CI2(g)Based on the above, the equilibrium constant for the following reaction is 0.25.2PCI5(g) ↔. 2PCI3(g) + 2CI2(g)arrow_forwardtrue or false, using the following equilibrium, if carbon dioxide is added the equilibrium will shift toward the productsC(s) + CO2(g) ↔ 2CO(g)arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





