
The potential for using renewable energy from the wind to produce most of the electricity used in the United States.

Answer to Problem 1CR
The United States has sufficient wind potential to meet 16 to 22 times its
Explanation of Solution
A study published in the Proceedings of the U.S. National Academy of Sciences assessed that the United States has sufficient wind potential to meet 16 to 22 times its current electricity needs. According to the U.S. Department of Energy (DOE), the wind farms that are situated at the favorable sites in three states such as North Dakota, Kansas, and Texas can meet the electricity needs of the lower 48 states when a modern electrical grid is available for the distribution of the electricity. In addition, the NREL estimates that winds off the Atlantic and Pacific coasts and the shores of the Great Lakes can generate 4 times the electricity currently used in the lower 48 states and it is more than enough electricity to replace all of the coal fired power plants in the country. Many states in these regions are planning to tap into this huge energy source and thereby enhance their economies.
A study conducted by DOE in 2015 shows that the United States can generate 30% of its electricity from wind by 2030 with the continuation of subsidies from government. This can result in 600,000 jobs and lower energy bills. It can decrease the pollution in air and slow the climate change ocean acidification by decreasing the use of coal for the generation of electricity.
Want to see more full solutions like this?
- A 40-cm circular PPC pile is driven to a depth of 20 meters in the soil conditions shown below. Calculate the (a) shaft resistance in the clay layer using the alpha method and the (b) shaft resistance in the sand layer using the beta method. Depth (m) 14 20 30 Stiff Clay y = 19.8 kN/m³ Su = 130 kPa a = 0.58 20- Dense Sand y = 18.8 kN/m³ Q=35º 8 = 2/34arrow_forwardFigure 12.7: A. B.arrow_forwardA. B. C. D. E.arrow_forward
- A) List and describe the six stages that led to the formation of Earth. 1. Nebular stage Gravity caused collapse of a rotating mass of dust and gas. 2. A star forms 3. Planetesimals form 4. The Sun ignites 5. Inner planets 6. Outer planets B) What does the presence of banded iron formation tell us about conditions in the early atmosphere and oceans? (Short answer , couple of sentences) C)What does the sediment core from Walvis Ridge, southern Atlantic Ocean, from 55-56 million years ago tell us about past climate? (Short answer , couple of sentences )arrow_forwardA) List three things that can be measured from annual layers of ice cores. 1 2 3.arrow_forward1. Use the descriptions of shoreline features provided above to label the structures in Figures 12.5 and 12.6. The same feature may appear more than once. 2. Next to each of the features listed below, indicate whether it is the result of erosional or depositional processes.Sea stack: Wave-cut cliff:Spit:Barrier island:Baymouth bar:Marine terrace:arrow_forward
- Activity 12.5B: Identifying Shoreline Features on a Topographic Map Pg 209The area shown on the Point Reyes, California, topographic map is located directly to the southwest of the San Andreas Fault, in a very tectonically active region (Figure 12.10). As a result, some of this region has recently been uplifted and exhibits characteristics of an emergent coastline. On the other hand, because of the general rise in sea level over the past several thousand years, other areas exhibit features associated with submergent coastlines. Refer to this topographic map to complete the following. 1. What type of shoreline feature is Drakes Estero (located near the center of the map)? 2. Point Reyes, located in the bottom-left corner of the map, is a headland undergoing severe wave erosion. What type of feature is Chimney Rock, located off the shore of Point Reyes? 3. Several depositional features near Drakes Estero are related to the movement of sediment by longshore currents. What type of…arrow_forwardActivity 12.3: Wave Refraction Pgs 202-203Figure 12.2 is a map view of a headland along a coastline. The water depths are shown by blue contour lines. As you complete the following questions, assume that waves with a wavelength of 60 feet are approaching the shoreline from the bottom left of the figure. 1. At approximately what water depth-10, 20, 30, or 40 feet-will the approaching waves begin to touch bottom and slow down? (Hint: Recall that this occurs when the water depth is one-half the wavelength.) 2. Using the wave shown in Figure 12.2 as a starting point, sketch a series of lines to illustrate the wave refraction that will occur as the wave approaches the shore by following these steps:Step 1: Mark the position on the 30-foot contour line where the wave front will first touch bottom.Step 2: Knowing that the section of the wave that touches bottom will slow down first, sketch the shape of the wave front when it reaches the 20-foot contour line.Step 3: Using the same…arrow_forwardCan trace and tell me how they did itarrow_forward
- Can someone show me how they would trace thisarrow_forwardI need help with this part E.arrow_forwardDiscussion Question: Ecosystems Essentials A+ shof 1000 Exo-spil The Human Denominator Assignment As we learn about how the earth works, we learn to identify the different earth spheres and how they overlap and affect one another. An understanding of the Earth's systems and spheres takes practice. More importantly, we can see the "Domino Effect" of the spheres as they interact with one another. We have learned that while endogenic processes are separate from exogenic process, the lithosphere affects the atmosphere which affects the hydrosphere, and thearrow_forward
- Applications and Investigations in Earth Science ...Earth ScienceISBN:9780134746241Author:Edward J. Tarbuck, Frederick K. Lutgens, Dennis G. TasaPublisher:PEARSONExercises for Weather & Climate (9th Edition)Earth ScienceISBN:9780134041360Author:Greg CarbonePublisher:PEARSONEnvironmental ScienceEarth ScienceISBN:9781260153125Author:William P Cunningham Prof., Mary Ann Cunningham ProfessorPublisher:McGraw-Hill Education
- Earth Science (15th Edition)Earth ScienceISBN:9780134543536Author:Edward J. Tarbuck, Frederick K. Lutgens, Dennis G. TasaPublisher:PEARSONEnvironmental Science (MindTap Course List)Earth ScienceISBN:9781337569613Author:G. Tyler Miller, Scott SpoolmanPublisher:Cengage LearningPhysical GeologyEarth ScienceISBN:9781259916823Author:Plummer, Charles C., CARLSON, Diane H., Hammersley, LisaPublisher:Mcgraw-hill Education,





