Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 17EAP
a. What is the wavelength of a 2.0 MHz ultrasound wave traveling through aluminum?
b. What frequency of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
5. The distance between Planet X and a star is 1.2 x 101 m. At the surface
of Planet X, the average intensity of the radiation from the star is 5355
W/m?. If the star radiates isotropically, which of the following is the average
power of the star?
A. 4.95 x 1028 W
B. 5.47 x 1027 W
C. 7.64 x 1024 W
D. 9.69 x 1026 W
DO0 F4
F7
F2
F3
&
LASIK eye surgery uses pulses of laser light to shave off tissue from the cornea, reshaping it. A typical LASIK laser emits a 1.0-mm-diameter laser beam with a wavelength of 193 nm. Each laser pulse lasts 15 ns and contains 1.0 mJ of light energy.a. What is the power of one laser pulse?b. During the very brief time of the pulse, what is the intensity of the light wave?
Electromagnetic waves, which include light, consist of vibrations of electric and magnetic fields, and they all travel at the speed of light, 3.00×108 m/s
Part A: Sunburn (and skin cancer) is caused by ultraviolet light waves having a frequency of around 1.02×10^16 Hz. What is their wavelength?
Part B: It has been suggested that extraterrestrial civilizations (if they exist) might try to communicate by using electromagnetic waves having the same frequency as that given off by the spin flip of the electron in hydrogen, which is 1.43 GHz. To what wavelength should we tune our telescopes in order to search for such signals?
Part C: Microwave ovens cook food with electromagnetic waves of frequency around 2.45 GHz. What wavelength do these waves have?
Chapter 16 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 16 - Prob. 1CQCh. 16 - A wave pulse trath along a stretched string at a...Ch. 16 - FIGURE Q16.3 is a history graph showing the...Ch. 16 - FIGURE Q16.4 shows a snapshot graph and a history...Ch. 16 - Rank in order, from largest to smallest, the...Ch. 16 - A sound wave with wavelength ?0 and frequency...Ch. 16 - Prob. 7CQCh. 16 - FIGURE Q16.8 is a snapshot graph of a sinusoidal...Ch. 16 - FIGURE Q16.9 shows the wave fronts of a circular...Ch. 16 - Prob. 10CQ
Ch. 16 - One physics professor talking produces a sound...Ch. 16 - You are standing at x = 0 m, listening to a sound...Ch. 16 - The wave speed on a string under tension is 200...Ch. 16 - The wave speed on a string is 150 m/s when the...Ch. 16 - A 25 g string is under 20 N of tension. A pulse...Ch. 16 - Draw the history graph D(x = 4.0 m, t ) at x = 4.0...Ch. 16 - Prob. 5EAPCh. 16 - Draw the snapshot graph D (x, t = 0 s) at t = 0 s...Ch. 16 - Prob. 7EAPCh. 16 - Prob. 8EAPCh. 16 - Prob. 9EAPCh. 16 - A wave has angular frequency 30 rad/s and...Ch. 16 - A wave travels with speed 200 m/s. Its wave number...Ch. 16 - Prob. 12EAPCh. 16 - The displacement of a wave traveling in thee...Ch. 16 - What are the amplitude, frequency and wavelength...Ch. 16 -
15. Show that the displacement D(x, t) cx2 + dt2,...Ch. 16 - Show that the displacement D(x, t) = ln(ax + bt),...Ch. 16 - a. What is the wavelength of a 2.0 MHz ultrasound...Ch. 16 - Prob. 18EAPCh. 16 - Prob. 19EAPCh. 16 - Prob. 20EAPCh. 16 - Prob. 21EAPCh. 16 - Prob. 22EAPCh. 16 - 23. Cell phone conversations are transmitted by...Ch. 16 - a. How long does it take light to travel through a...Ch. 16 - A light wave has a 670 nm wavelength in air. Its...Ch. 16 - Prob. 26EAPCh. 16 - Prob. 27EAPCh. 16 - Prob. 28EAPCh. 16 - Prob. 29EAPCh. 16 - Prob. 30EAPCh. 16 - Prob. 31EAPCh. 16 - Prob. 32EAPCh. 16 - A sound wave with intensity 2.0 × l0-3 W/m2 is...Ch. 16 - Prob. 34EAPCh. 16 - Prob. 35EAPCh. 16 - During takeoff, the sound intensity level of a jet...Ch. 16 - 37. The sun emits electromagnetic waves with a...Ch. 16 - What are the sound intensity levels for sound...Ch. 16 - Prob. 39EAPCh. 16 - Prob. 40EAPCh. 16 - Prob. 41EAPCh. 16 - Prob. 42EAPCh. 16 - A bat locates insects by emitting ultrasonic...Ch. 16 - Prob. 44EAPCh. 16 - 45. I FIGURE P16.45 is a history graph at x = 0 m...Ch. 16 - . I FIGURE P16.46 is a snapshot graph at t=0sof a...Ch. 16 - Prob. 47EAPCh. 16 - Prob. 48EAPCh. 16 - Prob. 49EAPCh. 16 - A helium-neon laser beam has a wavelength in air...Ch. 16 - Earthquakes are essentially sound waves—called...Ch. 16 - Helium (density 0.18k/m ’ at 0C and 1 atm...Ch. 16 - Prob. 53EAPCh. 16 - 54. A sound wave is described by ,where y is in m...Ch. 16 - A wave on a string is described by...Ch. 16 - Prob. 56EAPCh. 16 - Prob. 57EAPCh. 16 - Prob. 58EAPCh. 16 - Prob. 59EAPCh. 16 - The string in FIGURE P16.60 has linear density ....Ch. 16 - A string that is under 50.0N of tension has linear...Ch. 16 - Prob. 62EAPCh. 16 - A sinusoidal wave travels along a stretched...Ch. 16 - Prob. 64EAPCh. 16 - Prob. 65EAPCh. 16 - An AM radio station broadcasts with a power of...Ch. 16 - Prob. 67EAPCh. 16 - The sound intensity 50m from a wailing tornado...Ch. 16 - Prob. 69EAPCh. 16 - 70. A compact sound source radiates of sound...Ch. 16 - Prob. 71EAPCh. 16 - Prob. 72EAPCh. 16 - Prob. 73EAPCh. 16 - Prob. 74EAPCh. 16 - Prob. 75EAPCh. 16 - Prob. 76EAPCh. 16 - Prob. 77EAPCh. 16 - A starship approaches its home planet at a speed...Ch. 16 - Prob. 79EAPCh. 16 - Prob. 80EAPCh. 16 - Prob. 81EAPCh. 16 - A roof mass m and length L hangs from a ceiling....Ch. 16 - A communications truck with a 44-cm-diameter dish...Ch. 16 - Prob. 84EAPCh. 16 - A water wave is a shallow-water wave if the water...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Radar is used to determine distances to various objects by measuring the round-trip time for an echo from the object, (a) How far away is the planet Venus if the echo time is 1000 s? (b) What is the echo time for a car 75.0 m from a highway police radar unit? (c) How accurately (in nanoseconds) must you be able to measure the echo time to an airplane 12.0 km away to determine its distance within 10.0 m?arrow_forwardE1ecmagnedc radiation from a 5.00-mW laser is concentrated on a 100-mm2 area. (a) What is the intensity in W/m2? (b) Suppose a 2.00-nC electric charge is in the beam. What is the maximum electric force it experiences? (C) If the electric charge moves at 400 m/s, what maximum magnetic force can it feel?arrow_forward4. An electromagnetic wave has a frequency of 4.40 x 1014 Hz. Which of these expressions would yield the wavelength of this wave in meters? a. 4.40 x 1014 divided by 3.00 x 108 b. 4.40 x 1014 x 3.00 x 108 c. 3.00 x 108 d. 3.00 x 108 divided by 4.40 x 1014 e. 4.40 x 1014 marrow_forward
- The wavelength of some green light is 530.0 nm. What is the frequency of this green light?arrow_forwardanswer both a and b..Q23arrow_forward12.10. We will learn in Chapter 14 that brightness of light called its intensity I is inversely proportional to the square of the distance r² from the light source. a. As r increases what happens to r² (does it increase or decrease)? What then happens to I (does it increase or decrease)? b. Write an equation that relates the two variables I, r² using an unknown constant k. c. The intensity from a light source is 50 Watts/meter2 when observed from 2 meters away. What is the value and units of the proportionality constant. What is the equation that relates the two variables I, r² using an unknown constant k. d. What intensity do you expect to measure at 10 meters away?arrow_forward
- Microwaves used in microwave ovens often have a wavelength of about 26 cm. What is the frequency of these waves? Here you need to use the value of the speed of electromagnetic waves in vacuum; it is the very same value for all types of electromagnetic waves traveling in vacuum and inside the atmospheric air of a microwavearrow_forwardA cell phone operates at a frequency of 700MHz. What is the wave length of the waves produced as this cell phone send a signal through the air at 20 degrees C to a local cell phone tower? I got .42 m/wave but not sure I set up the equation correctly. Thanks.arrow_forwardA submarine trying to detect an enemy destroyer notes that a sonar signal sent through the water returns 0.40 seconds after it was sent. The frequency of the sonar used by the submarine is 20 kilo-hertz. The speed of sound in sea water is 1.56 x 10^3 meters per second. a. How far away is the destroyer? b. The Sonar comouters receive a reflection from the destroyer at a frequency of 19 kilo-hertz. What useful information about the motion of the destroyer does this mean the computer can report?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY