Chemistry: An Atoms-Focused Approach
Chemistry: An Atoms-Focused Approach
14th Edition
ISBN: 9780393912340
Author: Thomas R. Gilbert, Rein V. Kirss, Natalie Foster
Publisher: W. W. Norton & Company
Question
Book Icon
Chapter 16, Problem 16.90QA
Interpretation Introduction

To find:

The pH of 1.00 M CuNO32.

Expert Solution & Answer
Check Mark

Answer to Problem 16.90QA

Solution:

pH of 1.00 M CuNO32 is 3.76

Explanation of Solution

1) Concept:

To determine the pH of the solutions of a variety of metal ions we will find that these ions act as weak acids in a solution. When CuNO32 dissolves in water, the Cu2+ ions react with water to give a hydrated cupric ion CuH2O62+.

A shift in electron density occurs in hydrated metal ions having a generic formula MH2O6n+ when n2. The electrons in the O-H bonds of the water molecules surrounding the metal ions are attracted to positively charged ions. The resulting distortion in electron density increases the likelihood of one of these O-H bonds ionizing and donating a H+ ion to a neighboring molecule of water.

2) Formula:

i) Ka=A-H3O+HA

Where, Ka= acid ionization constant of a weak acid.

A-= concentration of a conjugate base

HA= concentration of an acid

ii) pH= -logH3O+

3) Given:

i) CuNO32=1.00 M

ii) For Cu2+ (aq), Ka=3×10-8

The Ka value is taken from table A5.2 of Ka values of hydrated metal ions mentioned in the book.

4) Calculation:

CuNO32 is a salt which shows complete dissociation in an aqueous medium.

CuNO32aqCu2+ aq+2NO3- (aq)

The formula for hydrated metal ion can be written as,CuH2O62+. The hydrated Cu2+ cation draws electron density away from the water molecules of its inner coordination sphere which makes it possible for one or more of these molecules to donate a H+ ion to a water molecule outside the sphere. The hydrated Cu2+ ion is left with one fewer H2O ligand and a bond between the complex and OH- ion.

CuH2O62+ aq+H2O l CuH2O5(OH)+ aq+H3O+ (aq)

Now draw the RICE table incorporating the concentrations.

CuH2O62+ M CuH2O5(OH)+ M H3O+ M
Initial (I) 1.00 0 0
Change (C) -x +x +x
Equilibrium (E) 1.00-x x x

Ka=CuH2O5(OH)+H3O+CuH2O62+

3×10-8= xx1.00-x

Now we make the simplifying assumption that x is much smaller than 1.00 M. Therefore, we can ignore the x term in the equilibrium value of  CuH2O62+ and use the simplified value in the expression.

3×10-8= xx1.00

x2=3×10-81.00=3×10-8

x=H3O+=1.732 ×10-4 M

Calculating the pH:

pH= -logH3O+= -log(1.732 ×10-4)

pH=3.76

pH of 1.00 M CuNO32 is 3.76

Conclusion:

With the help of the RICE table, the pH of the hydrated metal ion is calculated.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
9. OA. Rank the expected boiling points of the compounds shown below from highest to lowest. Place your answer appropriately in the box. Only the answer in the box will be graded. (3) points) OH OH بر بد بدید 2 3
There is an instrument in Johnson 334 that measures total-reflectance x-ray fluorescence (TXRF) to do elemental analysis (i.e., determine what elements are present in a sample). A researcher is preparing a to measure calcium content in a series of well water samples by TXRF with an internal standard of vanadium (atomic symbol: V). She has prepared a series of standard solutions to ensure a linear instrument response over the expected Ca concentration range of 40-80 ppm. The concentrations of Ca and V (ppm) and the instrument response (peak area, arbitrary units) are shown below. Also included is a sample spectrum. Equation 1 describes the response factor, K, relating the analyte signal (SA) and the standard signal (SIS) to their respective concentrations (CA and CIS).   Ca, ppm V, ppm SCa, arb. units SV, arb. units 20.0 10.0 14375.11 14261.02 40.0 10.0 36182.15 17997.10 60.0 10.0 39275.74 12988.01 80.0 10.0 57530.75 14268.54 100.0…
A mixture of 0.568 M H₂O, 0.438 M Cl₂O, and 0.710 M HClO are enclosed in a vessel at 25 °C. H₂O(g) + C₁₂O(g) = 2 HOCl(g) K = 0.0900 at 25°C с Calculate the equilibrium concentrations of each gas at 25 °C. [H₂O]= [C₁₂O]= [HOCI]= M Σ M

Chapter 16 Solutions

Chemistry: An Atoms-Focused Approach

Ch. 16 - Prob. 16.12QACh. 16 - Prob. 16.13QACh. 16 - Prob. 16.14QACh. 16 - Prob. 16.16QACh. 16 - Prob. 16.17QACh. 16 - Prob. 16.18QACh. 16 - Prob. 16.19QACh. 16 - Prob. 16.20QACh. 16 - Prob. 16.21QACh. 16 - Prob. 16.22QACh. 16 - Prob. 16.23QACh. 16 - Prob. 16.24QACh. 16 - Prob. 16.25QACh. 16 - Prob. 16.26QACh. 16 - Prob. 16.27QACh. 16 - Prob. 16.28QACh. 16 - Prob. 16.29QACh. 16 - Prob. 16.30QACh. 16 - Prob. 16.31QACh. 16 - Prob. 16.32QACh. 16 - Prob. 16.33QACh. 16 - Prob. 16.34QACh. 16 - Prob. 16.35QACh. 16 - Prob. 16.36QACh. 16 - Prob. 16.37QACh. 16 - Prob. 16.38QACh. 16 - Prob. 16.39QACh. 16 - Prob. 16.40QACh. 16 - Prob. 16.41QACh. 16 - Prob. 16.42QACh. 16 - Prob. 16.43QACh. 16 - Prob. 16.44QACh. 16 - Prob. 16.45QACh. 16 - Prob. 16.46QACh. 16 - Prob. 16.47QACh. 16 - Prob. 16.48QACh. 16 - Prob. 16.49QACh. 16 - Prob. 16.50QACh. 16 - Prob. 16.51QACh. 16 - Prob. 16.52QACh. 16 - Prob. 16.53QACh. 16 - Prob. 16.54QACh. 16 - Prob. 16.55QACh. 16 - Prob. 16.56QACh. 16 - Prob. 16.57QACh. 16 - Prob. 16.58QACh. 16 - Prob. 16.59QACh. 16 - Prob. 16.60QACh. 16 - Prob. 16.61QACh. 16 - Prob. 16.62QACh. 16 - Prob. 16.63QACh. 16 - Prob. 16.64QACh. 16 - Prob. 16.65QACh. 16 - Prob. 16.66QACh. 16 - Prob. 16.67QACh. 16 - Prob. 16.68QACh. 16 - Prob. 16.69QACh. 16 - Prob. 16.70QACh. 16 - Prob. 16.71QACh. 16 - Prob. 16.72QACh. 16 - Prob. 16.73QACh. 16 - Prob. 16.74QACh. 16 - Prob. 16.75QACh. 16 - Prob. 16.76QACh. 16 - Prob. 16.77QACh. 16 - Prob. 16.78QACh. 16 - Prob. 16.79QACh. 16 - Prob. 16.80QACh. 16 - Prob. 16.81QACh. 16 - Prob. 16.82QACh. 16 - Prob. 16.83QACh. 16 - Prob. 16.84QACh. 16 - Prob. 16.85QACh. 16 - Prob. 16.86QACh. 16 - Prob. 16.87QACh. 16 - Prob. 16.88QACh. 16 - Prob. 16.89QACh. 16 - Prob. 16.90QACh. 16 - Prob. 16.91QACh. 16 - Prob. 16.92QACh. 16 - Prob. 16.93QACh. 16 - Prob. 16.94QACh. 16 - Prob. 16.95QACh. 16 - Prob. 16.96QACh. 16 - Prob. 16.97QACh. 16 - Prob. 16.98QACh. 16 - Prob. 16.99QA
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY