
(a)
Interpretation:
The values of
Concept introduction:
The phenomenon of splitting of a spectral line when a magnetic field is applied to it is known as Zeeman Effect. Magnetic field strength can be measured by using the Zeeman Effect. Applications of Zeeman Effect include NMR spectroscopy, MRI and electron spin resonance spectroscopy.
During an electronic transition, an electron from ground state moves straight to the excited state keeping the internuclear distance constant.
The change in the energy of the state,

Answer to Problem 16.8E
The values of
Explanation of Solution
In case of
Where,
•
•
•
The value of magnetic field is
For,
Substitute the values of
For,
Substitute the values of
For,
Substitute the values of
Therefore, the values of
The values of
(b)
Interpretation:
The values of
Concept introduction:
The phenomenon of splitting of a spectral line when a magnetic field is applied to it is known as Zeeman Effect. Magnetic field strength can be measured by using the Zeeman Effect. Applications of Zeeman Effect include NMR spectroscopy, MRI and electron spin resonance spectroscopy.
During an electronic transition, an electron from ground state moves straight to the excited state keeping the internuclear distance constant.
The change in the energy of the state,

Answer to Problem 16.8E
The values of
The values of
Explanation of Solution
In case of
Where,
•
•
•
The value of magnetic field is
For,
Substitute the values of
For,
Substitute the values of
For,
Substitute the values of
Therefore, the values of
In case of
Where,
•
•
•
The value of magnetic field is
For,
Substitute the values of
For,
Substitute the values of
For,
Substitute the values of
For,
Substitute the values of
For,
Substitute the values of
Therefore, the values of
The values of
The values of
Want to see more full solutions like this?
Chapter 16 Solutions
EBK PHYSICAL CHEMISTRY
- CHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the limiting or determining step approximation method. Explain what it consists of.arrow_forwardCHEMICAL KINETICS. Indicate the approximation methods for solving the rate equation.arrow_forwardTRANSMITTANCE เบบ Please identify the one structure below that is consistent with the 'H NMR and IR spectra shown and draw its complete structure in the box below with the protons alphabetically labeled as shown in the NMR spectrum and label the IR bands, including sp³C-H and sp2C-H stretch, indicated by the arrows. D 4000 OH LOH H₂C CH3 OH H₂C OCH3 CH3 OH 3000 2000 1500 HAVENUMBERI-11 1000 LOCH3 Draw your structure below and label its equivalent protons according to the peak labeling that is used in the NMR spectrum in order to assign the peaks. Integrals indicate number of equivalent protons. Splitting patterns are: s=singlet, d=doublet, m-multiplet 8 3Hb s m 1Hd s 3Hf m 2Hcd 2Had 1He 鄙视 m 7 7 6 5 4 3 22 500 T 1 0arrow_forward
- Relative Transmittance 0.995 0.99 0.985 0.98 Please draw the structure that is consistent with all the spectral data below in the box and alphabetically label the equivalent protons in the structure (Ha, Hb, Hc ....) in order to assign all the proton NMR peaks. Label the absorption bands in the IR spectrum indicated by the arrows. INFRARED SPECTRUM 1 0.975 3000 2000 Wavenumber (cm-1) 1000 Structure with assigned H peaks 1 3 180 160 140 120 100 f1 (ppm) 80 60 40 20 0 C-13 NMR note that there are 4 peaks between 120-140ppm Integral values equal the number of equivalent protons 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 fl (ppm)arrow_forwardCalculate the pH of 0.0025 M phenol.arrow_forwardIn the following reaction, the OH- acts as which of these? NO2-(aq) + H2O(l) ⇌ OH-(aq) + HNO2(aq)arrow_forward
- Using spectra attached, can the unknown be predicted? Draw the predicition. Please explain and provide steps. Molecular focrmula:C16H13ClOarrow_forwardCalculate the percent ionization for 0.0025 M phenol. Use the assumption to find [H3O+] first. K = 1.0 x 10-10arrow_forwardThe Ka for sodium dihydrogen phosphate is 6.32 x 10-8. Find the pH of a buffer made from 0.15 M H2PO4- and 0.25 M HPO42- .arrow_forward
- The Ka for lactic acid is 1.4 x 10-4. Find the pH of a buffer made from 0.066 M lactic acid and 0.088 M sodium lactate.arrow_forwardZaitsev's Rule 3) (a) Rank the following alkenes in order of decreasing stability. most stable A B C D > > > (b) Rank the following carbocations in order of decreasing stability least stable B C Darrow_forwardCalculate the pH of 0.25 M acetic acid.arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
