EBK PHYSICAL CHEMISTRY
EBK PHYSICAL CHEMISTRY
2nd Edition
ISBN: 8220100477560
Author: Ball
Publisher: Cengage Learning US
Question
Book Icon
Chapter 16, Problem 16.8E
Interpretation Introduction

(a)

Interpretation:

The values of ΔE in the transition energies for each individual transition for the 1S1P transition when a sample is exposed to a magnetic field of 2.35 T are to be calculated.

Concept introduction:

The phenomenon of splitting of a spectral line when a magnetic field is applied to it is known as Zeeman Effect. Magnetic field strength can be measured by using the Zeeman Effect. Applications of Zeeman Effect include NMR spectroscopy, MRI and electron spin resonance spectroscopy.

During an electronic transition, an electron from ground state moves straight to the excited state keeping the internuclear distance constant.

The change in the energy of the state, ΔE is calculated by the formula shown below.

ΔE=μBMLB

Expert Solution
Check Mark

Answer to Problem 16.8E

The values of ΔE in the transition energies for 1P in the 1S1P transition are 2.18×1023 J, 0 J and +2.18×1023 J.

Explanation of Solution

In case of 1S1P transition, the splitting of 1S state does not take place because for this state, the value of L=0 and so ML=0. Therefore, splitting of only 1P state occurs due to the presence of degenerate ML=10 and +1 states. The value of ΔE is calculated by the formula shown below.

ΔE=μBMLB…(1)

Where,

μB is the Bohr magneton (9.274×1024J/T).

ML is the magnetic quantum number.

B is the magnetic field.

The value of magnetic field is 2.35 T.

For, ML=1.

Substitute the values of μB, B and ML=1 in equation (1) to calculate the change in energy.

ΔE=9.274×1024J/T×1×2.35 T=2.179×1023 J2.18×1023 J

For, ML=0

Substitute the values of μB, B and ML=0 in equation (1) to calculate the change in energy.

ΔE=9.274×1024J/T×0×2.35 T=0 J

For, ML=+1.

Substitute the values of μB, B and ML=+1 in equation (1) to calculate the change in energy.

ΔE=9.274×1024J/T×+1×2.35 T=+2.179×1023 J+2.18×1023 J

Therefore, the values of ΔE in the transition energies for 1P in the 1S1P transition are 2.18×1023 J, 0 J and +2.18×1023 J.

Conclusion

The values of ΔE in the transition energies for 1P in the 1S1P transition are 2.18×1023 J, 0 J and +2.18×1023 J.

Interpretation Introduction

(b)

Interpretation:

The values of ΔE in the transition energies for each individual transition for the 1P1D transition when a sample is exposed to a magnetic field of 2.35 T are to be calculated.

Concept introduction:

The phenomenon of splitting of a spectral line when a magnetic field is applied to it is known as Zeeman Effect. Magnetic field strength can be measured by using the Zeeman Effect. Applications of Zeeman Effect include NMR spectroscopy, MRI and electron spin resonance spectroscopy.

During an electronic transition, an electron from ground state moves straight to the excited state keeping the internuclear distance constant.

The change in the energy of the state, ΔE is calculated by the formula shown below.

ΔE=μBMLB

Expert Solution
Check Mark

Answer to Problem 16.8E

The values of ΔE in the transition energies for 1P in 1P1D transition are 2.18×1023 J, 0 J and +2.18×1023 J.

The values of ΔE in the transition energies for 1D in 1P1D transition are 4.358×1023 J, 2.18×1023 J, 0 J, +2.18×1023 J and +4.35×1023 J.

Explanation of Solution

In case of 1P1D transition, the splitting of 1P state occurs due to the presence of degenerate ML=10 and +1 states. The value of ΔE is calculated by the formula shown below.

ΔE=μBMLB…(1)

Where,

μB is the Bohr magneton (9.274×1024J/T).

ML is the magnetic quantum number.

B is the magnetic field.

The value of magnetic field is 2.35 T.

For, ML=1.

Substitute the values of μB, B and ML=1 in equation (1) to calculate the change in energy.

ΔE=9.274×1024J/T×1×2.35 T=2.179×1023 J2.18×1023 J

For, ML=0

Substitute the values of μB, B and ML=0 in equation (1) to calculate the change in energy.

ΔE=9.274×1024J/T×0×2.35 T=0 J

For, ML=+1.

Substitute the values of μB, B and ML=+1 in equation (1) to calculate the change in energy.

ΔE=9.274×1024J/T×+1×2.35 T=+2.179×1023 J+2.18×1023 J

Therefore, the values of ΔE in the transition energies for 1P are 2.18×1023 J, 0 J and +2.18×1023 J.

In case of 1P1D transition, the splitting of 1D state occurs due to the presence of degenerate ML=210+1 and +2 states. The value of ΔE is calculated by the formula shown below.

ΔE=μBMLB…(1)

Where,

μB is the Bohr magneton (9.274×1024J/T).

ML is the magnetic quantum number.

B is the magnetic field.

The value of magnetic field is 2.35 T.

For, ML=2.

Substitute the values of μB, B and ML=2 in equation (1) to calculate the change in energy.

ΔE=9.274×1024J/T×2×2.35 T=4.358×1023 J

For, ML=1.

Substitute the values of μB, B and ML=1 in equation (1) to calculate the change in energy.

ΔE=9.274×1024J/T×1×2.35 T=2.179×1023 J2.18×1023 J

For, ML=0

Substitute the values of μB, B and ML=0 in equation (1) to calculate the change in energy.

ΔE=9.274×1024J/T×0×2.35 T=0 J

For, ML=+1.

Substitute the values of μB, B and ML=+1 in equation (1) to calculate the change in energy.

ΔE=9.274×1024J/T×+1×2.35 T=+2.179×1023 J+2.18×1023 J

For, ML=+2.

Substitute the values of μB, B and ML=+2 in equation (1) to calculate the change in energy.

ΔE=9.274×1024J/T×+2×2.35 T=+4.35×1023 J

Therefore, the values of ΔE in the transition energies for 1D are 4.358×1023 J, 2.18×1023 J, 0 J, +2.18×1023 J and +4.35×1023 J.

Conclusion

The values of ΔE in the transition energies for 1P in 1P1D transition are 2.18×1023 J, 0 J and +2.18×1023 J.

The values of ΔE in the transition energies for 1D in 1P1D transition are 4.358×1023 J, 2.18×1023 J, 0 J, +2.18×1023 J and +4.35×1023 J.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Write the complete common (not IUPAC) name of each molecule below. Note: if a molecule is one of a pair of enantiomers, be sure you start its name with D- or L- so we know which enantiomer it is. molecule Ο C=O common name (not the IUPAC name) H ☐ H3N CH₂OH 0- C=O H NH3 CH₂SH H3N ☐ ☐ X G
(Part A) Provide structures of the FGI products and missing reagents (dashed box) 1 eq Na* H* H -H B1 B4 R1 H2 (gas) Lindlar's catalyst A1 Br2 MeOH H2 (gas) Lindlar's catalyst MeO. OMe C6H1402 B2 B3 A1 Product carbons' origins Draw a box around product C's that came from A1. Draw a dashed box around product C's that came from B1.
Classify each of the amino acids below. Note for advanced students: none of these amino acids are found in normal proteins. X CH2 H3N-CH-COOH3N-CH-COO- H3N-CH-COO CH2 CH3-C-CH3 CH2 NH3 N NH (Choose one) ▼ (Choose one) S CH2 OH (Choose one) ▼ + H3N-CH-COO¯ CH2 H3N CH COO H3N-CH-COO CH2 오오 CH CH3 CH2 + O C CH3 O= O_ (Choose one) (Choose one) ▼ (Choose one) G
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Physical Chemistry
    Chemistry
    ISBN:9781133958437
    Author:Ball, David W. (david Warren), BAER, Tomas
    Publisher:Wadsworth Cengage Learning,
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,