BIO ULTRASOUND IMAGING. A typical ultrasound transducer used for medical diagnosis produces a beam of ultrasound with a frequency of 1.0 MHz. The beam travels from the transducer through tissue and partially reflects when it encounters different structures in the tissue. The same transducer that produces the ultrasound also detects the reflections. The transducer emits a short pulse of ultrasound and waits to receive the reflected echoes before emitting the next pulse. By measuring the time between the initial pulse and the arrival of the reflected signal, we can use the speed of ultrasound in tissue, 1540 m/s, to determine the distance from the transducer to the structure that produced the reflection. As the ultrasound beam passes through tissue, the beam is attenuated through absorption. Thus deeper structures return weaker echoes. A typical attenuation in tissue is −100 dB/m · MHz; in bone it is −500 dB/m · MHz. In determining attenuation, we take the reference intensity to be the intensity produced by the transducer. 16.77 If the deepest structure you wish to image is 10.0 cm from the transducer, what is the maximum number of pulses per second that can be emitted? (a) 3850; (b) 7700; (c) 15,400; (d) 1,000,000.
BIO ULTRASOUND IMAGING. A typical ultrasound transducer used for medical diagnosis produces a beam of ultrasound with a frequency of 1.0 MHz. The beam travels from the transducer through tissue and partially reflects when it encounters different structures in the tissue. The same transducer that produces the ultrasound also detects the reflections. The transducer emits a short pulse of ultrasound and waits to receive the reflected echoes before emitting the next pulse. By measuring the time between the initial pulse and the arrival of the reflected signal, we can use the speed of ultrasound in tissue, 1540 m/s, to determine the distance from the transducer to the structure that produced the reflection. As the ultrasound beam passes through tissue, the beam is attenuated through absorption. Thus deeper structures return weaker echoes. A typical attenuation in tissue is −100 dB/m · MHz; in bone it is −500 dB/m · MHz. In determining attenuation, we take the reference intensity to be the intensity produced by the transducer. 16.77 If the deepest structure you wish to image is 10.0 cm from the transducer, what is the maximum number of pulses per second that can be emitted? (a) 3850; (b) 7700; (c) 15,400; (d) 1,000,000.
BIO ULTRASOUND IMAGING. A typical ultrasound transducer used for medical diagnosis produces a beam of ultrasound with a frequency of 1.0 MHz. The beam travels from the transducer through tissue and partially reflects when it encounters different structures in the tissue. The same transducer that produces the ultrasound also detects the reflections. The transducer emits a short pulse of ultrasound and waits to receive the reflected echoes before emitting the next pulse. By measuring the time between the initial pulse and the arrival of the reflected signal, we can use the speed of ultrasound in tissue, 1540 m/s, to determine the distance from the transducer to the structure that produced the reflection.
As the ultrasound beam passes through tissue, the beam is attenuated through absorption. Thus deeper structures return weaker echoes. A typical attenuation in tissue is −100 dB/m · MHz; in bone it is −500 dB/m · MHz. In determining attenuation, we take the reference intensity to be the intensity produced by the transducer.
16.77 If the deepest structure you wish to image is 10.0 cm from the transducer, what is the maximum number of pulses per second that can be emitted? (a) 3850; (b) 7700; (c) 15,400; (d) 1,000,000.
Please solve and answer this problem correctly please. Thank you!!
Please solve and answer this problem correctly please. Thank you!!
a) Use the node-voltage method to find v1, v2, and
v3 in the circuit in Fig. P4.14.
b) How much power does the 40 V voltage source
deliver to the circuit?
Figure P4.14
302
202
w
w
+
+
+
40 V
V1
80 Ω 02
ΣΑΩ
28 A
V3 +
w
w
102
202
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.