MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 16.53E
(a)
To determine
The frequency of the note heard by the each swift canary.
(b)
To determine
The wavelength of the wave of the note measured for the note from other.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. please show all steps
Aromatic molecules like those in perfume have a diffusion coefficient in air of approximately 2×10−5m2/s2×10−5m2/s.
Part A
Estimate, to one significant figure, how many hours it takes perfume to diffuse 2.5 mm, about 6.5 ftft, in still air.
Express your answer in hours to one significant figure.
Rocket Science:
CH
83. A rocket of mass M moving at speed v ejects an infinitesimal
mass dm out its exhaust nozzle at speed vex. (a) Show that con-
servation of momentum implies that M dy = vex dm, where dy is
the change in the rocket's speed. (b) Integrate this equation from
some initial speed v; and mass M; to a final speed vf and mass Mf
Vf
to show that the rocket's final velocity is given by the expression
V₁ = V¡ + Vex ln(M¡/M₁).
Chapter 16 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 16.1 - You use an electronic signal generator to produce...Ch. 16.2 - Mercury is 13.6 times denser than water. Based on...Ch. 16.3 - Prob. 16.3TYUCh. 16.4 - If you connect a hose to one end of a metal pipe...Ch. 16.5 - A stopped organ pipe of length L has a fundamental...Ch. 16.6 - Suppose that speaker A in Fig. 16.23 emits a...Ch. 16.7 - One tuning fork vibrates at 440 Hz, while a second...Ch. 16.8 - You are at an outdoor concert with a wind blowing...Ch. 16.9 - What would you hear if you were directly behind...Ch. 16 - Prob. 16.1DQ
Ch. 16 - The hero of a western movie listens for an...Ch. 16 - Would you expect the pitch (or frequency) of an...Ch. 16 - In most modern wind instruments the pitch is...Ch. 16 - Symphonic musicians always warm up their wind...Ch. 16 - In a popular and amusing science demonstration, a...Ch. 16 - Prob. 16.7DQCh. 16 - (a) Does a sound level of 0 dB mean that there is...Ch. 16 - Which has a more direct influence on the loudness...Ch. 16 - If the pressure amplitude of a sound wave is...Ch. 16 - Does the sound intensity level obey the...Ch. 16 - A small fraction of the energy in a sound wave is...Ch. 16 - A small metal band is slipped onto one of the...Ch. 16 - An organist in a cathedral plays a loud chord and...Ch. 16 - Prob. 16.15DQCh. 16 - Two vibrating tuning forks have identical...Ch. 16 - A large church has part of the organ in the front...Ch. 16 - A sound source and a listener are both at rest on...Ch. 16 - Can you think of circumstances in which a Doppler...Ch. 16 - Prob. 16.20DQCh. 16 - If you wait at a railroad crossing as a train...Ch. 16 - In case 1, a source of sound approaches a...Ch. 16 - Does an aircraft make a sonic boom only at the...Ch. 16 - If you are riding in a supersonic aircraft, what...Ch. 16 - Prob. 16.25DQCh. 16 - Example 16.1 (Section 16.1) showed that for sound...Ch. 16 - Prob. 16.2ECh. 16 - Consider a sound wave in air that has displacement...Ch. 16 - A loud factory machine produces sound having a...Ch. 16 - BIO Ultrasound and Infrasound. (a) Whale...Ch. 16 - (a) In a liquid with density 1300 kg/m3,...Ch. 16 - A submerged scuba diver hears the sound of a boat...Ch. 16 - Prob. 16.8ECh. 16 - An oscillator vibrating at 1250 Hz produces a...Ch. 16 - CALC (a) Show that the fractional change in the...Ch. 16 - A 60.0-m-long brass rod is struck at one end. A...Ch. 16 - Prob. 16.12ECh. 16 - BIO Energy Delivered to the Ear. Sound is detected...Ch. 16 - (a) By what factor must the sound intensity be...Ch. 16 - Eavesdropping! You are trying to overhear a juicy...Ch. 16 - BIO Human Hearing. A fan at a rock concert is 30 m...Ch. 16 - A sound wave in air at 20C has a frequency of 320...Ch. 16 - You live on a busy street, but as a music lover,...Ch. 16 - BIO For a person with normal hearing, the faintest...Ch. 16 - The intensity due to a number of independent sound...Ch. 16 - CP A babys mouth is 30 cm from her fathers ear and...Ch. 16 - The Sacramento City Council adopted a law to...Ch. 16 - CP At point A, 3.0 m from a small source of sound...Ch. 16 - (a) If two sounds differ by 5.00 dB, find the...Ch. 16 - Standing sound waves are produced in a pipe that...Ch. 16 - The fundamental frequency of a pipe that is open...Ch. 16 - Prob. 16.27ECh. 16 - BIO The Vocal Tract. Many opera singers (and some...Ch. 16 - The longest pipe found in most medium-size pipe...Ch. 16 - Singing in the Shower. A pipe closed at both ends...Ch. 16 - You blow across the open mouth of an empty test...Ch. 16 - Prob. 16.32ECh. 16 - A 75.0-cm-long wire of mass 5.625 g is tied at...Ch. 16 - Small speakers A and B are driven in phase at 725...Ch. 16 - Prob. 16.35ECh. 16 - Two loudspeakers, A and B (see Fig. E16.35), are...Ch. 16 - Two loudspeakers, A and B, are driven by the same...Ch. 16 - Two loudspeakers, A and B, are driven by the same...Ch. 16 - Two small stereo speakers are driven in step by...Ch. 16 - Two guitarists attempt to play the same note of...Ch. 16 - Prob. 16.41ECh. 16 - Adjusting Airplane Motors. The motors that drive...Ch. 16 - Two organ pipes, open at one end but closed at the...Ch. 16 - In Example 16.18 (Section 16.8), suppose the...Ch. 16 - On the planet Arrakis a male ornithoid is flying...Ch. 16 - A railroad train is traveling at 25.0 m/s in still...Ch. 16 - Two train whistles, A and B, each have a frequency...Ch. 16 - Moving Source vs. Moving Listener. (a) A sound...Ch. 16 - A swimming duck puddles the water with its feet...Ch. 16 - A railroad train is traveling at 30.0 m/s in still...Ch. 16 - A car alarm is emitting sound waves of frequency...Ch. 16 - While sitting in your car by the side of a country...Ch. 16 - Prob. 16.53ECh. 16 - The siren of a fire engine that is driving...Ch. 16 - A stationary police car emits a sound of frequency...Ch. 16 - How fast (as a percentage of light speed) would a...Ch. 16 - A jet plane flies overhead at Mach 1.70 and at a...Ch. 16 - The shock-wave cone created by a space shuttle at...Ch. 16 - A soprano and a bass are singing a duet. While the...Ch. 16 - CP The sound from a trumpet radiates uniformly in...Ch. 16 - Prob. 16.61PCh. 16 - CP A uniform 165-N bar is supported horizontally...Ch. 16 - An organ pipe has two successive harmonics with...Ch. 16 - Prob. 16.64PCh. 16 - Prob. 16.65PCh. 16 - A bat flies toward a wall, emitting a steady sound...Ch. 16 - The sound source of a ships sonar system operates...Ch. 16 - BIO Ultrasound in Medicine. A 2.00-MHZ sound wave...Ch. 16 - BIO Horseshoe bats (genus Rhinolophus) emit sounds...Ch. 16 - CP A police siren of frequency fsiren is attached...Ch. 16 - CP A turntable 1.50 m in diameter rotates at 75...Ch. 16 - DATA A long, closed cylindrical tank contains a...Ch. 16 - Prob. 16.73PCh. 16 - DATA Supernova! (a) Equation (16.30) can be...Ch. 16 - CALC Figure P16.75 shows the pressure fluctuation...Ch. 16 - CP Longitudinal Waves on a Spring. A long spring...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Formant Freqmcy The horizontal dotted lines represent the formants. The first box represents the schwa sound. The second box is a different vowel. The scale is the same on each of these two vowels. Use the two formant contours to answer questions 12-16 SCHWA VOWEL 2 0.179362213 Time (s) 0.92125285 0.0299637119 4000 1079 Time(s) unknown 0.6843 13. Please describe what the tongue is doing to shift from the schwa to vowel 2? 14. Is vowel 2 a rounded or unrounded vowel? 15. Is vowel 2 a front or back vowel? 16. What vowel is vowel 2 (00, ee, ah) 0684285714arrow_forwardmicrowavearrow_forward4) Consider the pulley (Mass = 20kg, Radius 0.3m) shown in the picture. Model this pulley as a uniform solid disk (1 = (1/2) MR2) that is hinged at its center of mass. If the hanging mass is 30 kg, and is released, (a) compute the angular acceleration of the pulley (b) calculate the acceleration of the hanging mass. A o 0.3 3019 20KSarrow_forward
- Refer to the image attachedarrow_forwardShrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forwardMake up an application physics principle problem that provides three (3) significant equations based on the concepts of capacitors and ohm's law.arrow_forward
- A straight horizontal garden hose 38.0 m long with an interior diameter of 1.50 cm is used to deliver 20oC water at the rate of 0.590 liters/s. Assuming that Poiseuille's Law applies, estimate the pressure drop (in Pa) from one end of the hose to the other.arrow_forwardA rectangle measuring 30.0 cm by 40.0 cm is located inside a region of a spatially uniform magnetic field of 1.70 T , with the field perpendicular to the plane of the coil (the figure (Figure 1)). The coil is pulled out at a steady rate of 2.00 cm/s traveling perpendicular to the field lines. The region of the field ends abruptly as shown. Find the emf induced in this coil when it is all inside the field, when it is partly in the field, and when it is fully outside. Please show all steps.arrow_forwardA rectangular circuit is moved at a constant velocity of 3.00 m/s into, through, and then out of a uniform 1.25 T magnetic field, as shown in the figure (Figure 1). The magnetic field region is considerably wider than 50.0 cm . Find the direction (clockwise or counterclockwise) of the current induced in the circuit as it is going into the magnetic field (the first case), totally within the magnetic field but still moving (the second case), and moving out of the field (the third case). Find the magnitude of the current induced in the circuit as it is going into the magnetic field . Find the magnitude of the current induced in the circuit as it is totally within the magnetic field but still moving. Find the magnitude of the current induced in the circuit as it is moving out of the field. Please show all stepsarrow_forward
- Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forwardA circular loop of wire with radius 0.0480 m and resistance 0.163 Ω is in a region of spatially uniform magnetic field, as shown in the following figure (Figure 1). The magnetic field is directed out of the plane of the figure. The magnetic field has an initial value of 7.88 T and is decreasing at a rate of -0.696 T/s . Is the induced current in the loop clockwise or counterclockwise? What is the rate at which electrical energy is being dissipated by the resistance of the loop? Please explain all stepsarrow_forwardA 0.333 m long metal bar is pulled to the left by an applied force F and moves to the left at a constant speed of 5.90 m/s. The bar rides on parallel metal rails connected through a 46.7 Ω resistor, as shown in (Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and rails. The circuit is in a uniform 0.625 T magnetic field that is directed out of the plane of the figure. Is the induced current in the circuit clockwise or counterclockwise? What is the rate at which the applied force is doing work on the bar? Please explain all stepsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning